Organometallics
Article
Organometallics 2013, 32, 7323. (g) Brennan, C.; Draksharapu, A.;
Browne, W. R.; McGarvey, J. J.; Vos, J. G.; Pryce, M. T. Dalton Trans.
2013, 42, 2546. (h) Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS
Catal. 2015, 5, 411.
(6) Allcock, H. R.; Nugent, T. A.; Smeltz, L. A. Synth. React. Inorg. Met.-
Org. Chem. 1972, 2, 97.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(7) Liberman-Martin, A. L.; Bergman, R. G.; Tilley, T. D. J. Am. Chem.
Soc. 2015, 137, 5328.
(8) Walker, D. A.; Woodman, T. J.; Hughes, D. L.; Bochmann, M.
Organometallics 2001, 20, 3772.
(9) Martin, E.; Spendley, C.; Mountford, A. J.; Coles, S. J.; Horton, P.
N.; Hughes, D. L.; Hursthouse, M. B.; Lancaster, S. J. Organometallics
2008, 27, 1436.
DFT results and additional experimental details (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
(10) Priqueler, J. R. L.; Butler, I. S.; Rochon, F. D. Appl. Spectrosc. Rev.
2006, 41, 185.
Notes
(11) (a) Sutcliffe, V. F.; Young, G. B. Polyhedron 1984, 3, 87.
(b) Thomson, S. K.; Young, G. B. Polyhedron 1988, 7, 1953. (c) Scott, J.
D.; Puddephatt, R. J. Organometallics 1986, 5, 1538. (d) Braterman, P.
S.; Song, J.-I.; Vogler, C.; Kaim, W. Inorg. Chem. 1992, 31, 222. (e) Klein,
A.; Kaim, W.; Hornung, F. M.; Fiedler, J.; Zalis, S. Inorg. Chim. Acta
1997, 264, 269.
(12) (a) Zanell, P.; Corsini, M. Coord. Chem. Rev. 2006, 250, 2000.
(b) Broere, D. L. J.; Plessius, R.; van der Vlugt, J. I. Chem. Soc. Rev. 2015,
44, 6886.
(13) (a) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
(b) Phapale, V. B.; Cardenas, D. J. Chem. Soc. Rev. 2009, 38, 1598.
(c) Brown, J. M.; Cooley, N. A. Chem. Rev. 1988, 88, 1031.
(14) (a) Merwin, R. K.; Schnabel, R. C.; Koola, J. D.; Roddick, D. M.
Organometallics 1992, 11, 2972. (b) Korenaga, T.; Abe, K.; Ko, A.;
Maenishi, R.; Sakai, T. Organometallics 2010, 29, 4025. (c) Shiba, Y.;
Inagaki, A.; Akita, M. Organometallics 2015, 34, 4844.
(15) Decomposition of the silane adducts 2 and 3 occurs at 140 °C,
with no biaryl reductive elimination observed by 1H or 19F NMR
spectroscopy.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Director, Office of Science,
Office of Basic Energy Sciences of the U.S. Department of
Energy, under contract no. DE-AC02-05CH11231 (T.D.T.) and
the National Science Foundation under award no. CHE-
0841786 (R.G.B.). We also acknowledge the National Institutes
of Health for funding of the ChexRay X-ray crystallographic
facility (College of Chemistry, University of California, Berkeley)
under grant number S10-RR027172, the Berkeley College of
Chemstry NMR facility under grant SRR023679A, and the
National Science Foundation for funding the Molecular Graphics
and Computation Facility under grant number CHE-0840505.
D.S.L. would like to acknowledge support of an NSF Graduate
Research Fellowship. Electrochemical measurements were
performed at the Joint Center for Artificial Photosynthesis, a
DOE Energy Innovation Hub, supported through the Office of
Science of the U.S. Department of Energy under award number
DE-SC0004993 (W.L.). The authors thank Mark C. Lipke for
useful discussions on silicon Lewis acids, Michael I. Lipschutz
and Micah S. Ziegler for assistance with X-ray diffraction, and
Teera Chantarojsiri for assistance with UV−vis spectroscopy.
(16) (a) Boag, N. M.; Green, M.; Grove, D. M.; Howard, J. A. K.;
Spencer, J. L.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1980, 2170.
(b) Boag, N. M.; Green, M.; Howard, J. A. K.; Stone, F. G. A.; Wadepohl,
H. J. Chem. Soc., Dalton Trans. 1981, 862.
(17) Ozawa, F.; Hikida, T.; Hayashi, T. J. Am. Chem. Soc. 1994, 116,
2844.
(18) Kurosawa, H.; Emoto, M.; Urabe, A.; Miki, K.; Kasai, N. J. Am.
Chem. Soc. 1985, 107, 8253.
(19) (a) Crumpton-Bregel, D. M.; Goldberg, K. I. J. Am. Chem. Soc.
2003, 125, 9442. (b) Arthur, K. L.; Wang, Q. L.; Bregel, D. M.; Smythe,
N. A.; O’Neill, B. A.; Goldberg, K. I.; Moloy, K. G. Organometallics 2005,
24, 4624.
(20) Hartwig, J. F. Ligand Substitution Reactions. In Organotransition
Metal Chemistry: From Bonding to Catalysis; University Science Books:
USA, 2010; pp 217−261.
REFERENCES
■
(1) (a) Piers, W. E.; Chivers, T. Chem. Soc. Rev. 1997, 26, 345.
(b) Chivers, T. J. Fluorine Chem. 2002, 115, 1. (c) Erker, G. Dalton
Trans. 2005, 1883.
(2) Chen, E. Y.-X.; Marks, T. J. Chem. Rev. 2000, 100, 1391.
(3) (a) Kita, M. R.; Miller, A. J. M. J. Am. Chem. Soc. 2014, 136, 14519.
(b) Ouyang, G.-H.; He, Y.-M.; Li, Y.; Xiang, J.-F.; Fan, Q.-H. Angew.
Chem., Int. Ed. 2015, 54, 4334.
(4) (a) Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.;
Fujii, H. Science 1998, 280, 560. (b) Hashiguchi, B. G.; Young, K. J. H.;
Yousufuddin, M.; Goddard, W. A.; Periana, R. A. J. Am. Chem. Soc. 2010,
132, 12542. (c) Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.;
Kasuga, K. Organometallics 2007, 26, 702. (d) Dixon, N. A.; McQuarters,
A. B.; Kraus, J. S.; Soffer, J. B.; Lehnert, N.; Schweitzer-Stenner, R.;
Papish, E. T. Chem. Commun. 2013, 49, 5571. (e) Hesp, K. D.;
McDonald, R.; Ferguson, M. J.; Schatte, G.; Stradiotto, M. Chem.
Commun. 2008, 5645. (f) Hesp, K. D.; McDonald, R.; Ferguson, M. J.;
Stradiotto, M. J. Am. Chem. Soc. 2008, 130, 16394.
(5) (a) Lee, B. Y.; Bazan, G. C.; Vela, J.; Komon, Z. J. A.; Bu, X. J. Am.
Chem. Soc. 2001, 123, 5352. (b) Kim, Y. H.; Kim, T. H.; Lee, B. Y.;
Woodmansee, D.; Bu, X.; Bazan, G. C. Organometallics 2002, 21, 3082.
(c) Azoulay, J. D.; Rojas, R. S.; Serrano, A. V.; Ohtaki, H.; Galland, G. B.;
Qu, G.; Bazan, G. C. Angew. Chem., Int. Ed. 2009, 48, 1089. (d) Azoulay,
J. D.; Koretz, Z. A.; Wu, G.; Bazan, G. C. Angew. Chem., Int. Ed. 2010, 49,
7890. (e) Liberman-Martin, A. L.; Bergman, R. G.; Tilley, T. D. J. Am.
Chem. Soc. 2013, 135, 9612. (f) Trofymchuk, O. S.; Gutsulyak, D. V.;
Quintero, C.; Parvez, M.; Daniliuc, C. G.; Piers, W. E.; Rojas, R. S.
F
Organometallics XXXX, XXX, XXX−XXX