R. Mahesh et al. / Bioorg. Med. Chem. Lett. 14 (2004) 5179–5181
5181
by the literature method.17 The tissue was equilibrated
for 30min. under a resting tension of 500mg and con-
stant aeration in a 40mL organ bath containing Tyrode
solution maintained at ca. 37°C. Noncumulative con-
centrations of 2-methyl-5-HT (Tocris, UK) were added
with a 15min. dosing cycle (to prevent desensitization)
and left in contact with the tissue until the maximal con-
traction had developed. To study the antagonist effect of
the test compounds on the response evoked by 2-methyl-
5-HT, the compounds were added to the organ bath and
left in contact with the tissue for at least 10min prior to
the addition of 2-methyl-5-HT. The contractions were
recorded using a T-305 Force transducer coupled to a
StudentÕs physiograph (Bio Devices, Ambala, India).
Antagonism was expressed in the form of pA2 values,
which were graphically determined.18 The pA2 values
of the test compounds were compared with the standard
antagonist Ondansetron (Natco Pharma, Hyderabad,
India). The observed pharmacological data is repre-
sented in the Table 1.
for providing necessary infrastructure to carry out this
research and the RSIC, Punjab University, Chandigarh,
India, for providing spectral and analytical data.
References and notes
1. Karim, F.; Roerig, S. C.; Saphier, D. Biochem. Pharmacol.
1996, 52, 685.
2. Negus, B.; Markocic, S. Acute Pain 2003, 5(2), 63.
3. Jones, B. J.; Blackburn, T. P. Pharmacol. Biochem. Behav.
2002, 71, 555.
4. Hibert, M. F.; Hoffmann, R.; Miller, R. C.; Carr, A. A.
J. Med. Chem. 1990, 33, 1594.
5. Clark, R. D.; Miller, A. B.; Berger, J.; Repke, D. B.;
Weinhardt, K. K.; Kowalczyk, B. A.; Eglen, R. M.;
Bonhaus, D. W.; Lee, C.-H.; Michel, A. D.; Smith, W. L.;
Wong, E. H. F. J. Med. Chem. 1993, 36, 2645.
6. Ohta, M.; Suzuki, T.; Koide, T.; Matsuhisa, A.; Furuya,
T.; Miyata, K.; Yanagisawa, I. Chem. Pharm. Bull. 1996,
44(5), 991.
7. Rosen, T.; Nagel, A. A.; Rizzi, J. P.; Ives, J. L.; Daffeh, J.
B.; Ganong, A. H.; Guarino, K.; Heym, J.; McLean, S.;
Nawadowski, J. T.; Schmidt, A. W.; Seeger, T. F.; Siok, C.
J.; Vincent, L. A. J. Med. Chem. 1990, 33, 2715.
8. Round, A.; Wallis, D. I. Neuropharmacology 1987, 26, 39.
9. Emerit, M. B.; Riad, M.; Fattaccini, C. M.; Hammon, M.
J. Neurochem. 1993, 60, 2059.
10. Laguerre, M.; Dubost, J.-P.; Kummer, E.; Carpy, A. Drug
Des. Discov. 1994, 11, 205.
11. Monge, A.; Palop, J. A.; DelCastillo, C.; Caldero, J. M.;
Roca, J.; Romero, G.; Del Rio, J.; Lasheras, B. J. Med.
Chem. 1993, 36, 2745.
12. Monge, A.; Pena, M. D. C.; Palop, J. A.; Caldero, J. M.;
Roca, J.; Romero, G.; DelRio, J.; Lasheras, B. J. Med.
Chem. 1994, 37, 1320.
13. Orjales, A.; Mosquera, R.; Rabeaga, L.; Rodes, R.
J. Med. Chem. 1997, 40, 586.
In the present study, we have demonstrated the synthe-
sis and 5-HT3 receptor antagonistic activity of novel
2-(4-substituted piperazin-1-yl)-1,8-naphthyridine-3-car-
bonitrile in the isolated Guinea pig ileum. All the test
compounds showed 5-HT3 receptor antagonistic activi-
ties. Compound 6a (with no substitution at N4 pipera-
zine) showed good antagonism (pA2 6.5); with
increased liphophilicity (i.e., methyl group, 6b) activity
increased (pA2 7.4). Further increase in liphophilicity
(i.e., ethyl group, 6c) decreased the activity (pA2 7.1),
whereas substitution with allyl group (compound 6d)
showed most favorable antagonism (pA2 8.2). Placement
of bulkier groups like aryl/substituted aryl at N4 pipera-
zine (compounds 6e–l) decreased the activity. In addi-
tion, electron withdrawing substituents at aryl group
of N4 piperazine (compounds 6j–l) showed the least
activity among the aryl derivatives. Compounds 6b, 6c,
and 6d showed higher antagonism than Ondansetron
(pA2 6.9) in the isolated Guinea pig ileum. Hence further
studies in these compounds are planned to obtain clini-
cally useful agents.
14. Majewicz, T. G.; Caluwe, P. J. Org. Chem. 1974, 39(5),
720.
15. 90% Yield; mp > 300°C. IR (KBr) (cmÀ1): 3335 (NH),
2216(C „N), 1671 (C@O), 1593 (C@N). 1H NMR
(300MHz) (DMSO-d6) (d) ppm: 7.29 (dd, 1H, J=7.5,
8.5Hz, C6–H), 7.98 (d, 1H, J = 7.5Hz, C5–H), 8.39 (s, 1H,
C4–H), 8.95 (d, 1H, J = 8.5Hz, C7–H), 12.01 (s, 1H, NH).
Anal. Calcd for C9H5N3O: C, 63.16; H, 2.92; N, 24.56.
Found C, 63.08; H, 2.76; N, 24.68.
16. 79% Yield; mp > 300°C. IR (KBr) (cmÀ1): 2222 (C„N),
Acknowledgements
1
1601 (C@N), 810 (C–Cl). H NMR (300MHz) (DMSO-
d6) (d) ppm: 7.31 (dd, 1H, J = 7.5, 8.5Hz, C6–H), 7.80 (d,
1H, J = 7.5Hz, C5–H), 8.36(s, 1H, C 4–H), 9.01 (d, 1H,
J = 8.5Hz, C7–H). Anal. Calcd for C9H4N3Cl: C, 56.99;
H, 2.11; N, 22.16. Found. C, 56.63; H, 1.91; N, 22.41.
17. Paton, W. D. M.; Zar, A. M. J. Physiol. 1968, 194, 13.
18. Mac Kay, D. J. Pharm. Pharmacol. 1978, 30, 312.
This research was supported by grants from the Univer-
sity Grants Commission, New Delhi, India. We are
thankful to the CSIR, New Delhi, India for awarding
SRF to one of the authors (R.V.P.). We are grateful
to the Birla Institute of Technology and Science, Pilani,