J Am Soc Mass Spectrom 2010, 21, 545–549
ESI-MS STUDY OF -STACKING INTERACTIONS
549
References
1. Gokel, G. W.; Leevy, W. M.; Weber, M. E. Crown Ethers: Sensors for
Ions and Molecular Scaffolds for Materials and Biological Models. Chem.
Rev. 2004, 104, 2723–2750.
2. Leize, E.; Anne Jaffrezic, A.; Van Dorsselaer, A. Correlation Between
Solvation Energies and Electrospray Mass Spectrometric Response
Factors. Study by Electrospray Mass Spectrometry of Supramolecular
Complexes in Thermodynamic Equilibrium in Solution. J. Mass Spec-
trom. 1996, 31, 537–544.
3. Shen, N.; Pope, R. M.; Dearden, D. V. Fundamental Factors Controlling
the Exchange of Multidentate Ligands: Displacement of 12-Crown-4
and Triglyme from Complexes with Divalent Alkaline Earth Cations.
Int. J. Mass Spectrom. 2000, 195/196, 639–652.
4. Nicoll, J. B.; Dearden, D. V. Reactions of Multidentate Ligands with
Ligated Alkali Cation complexes: Self-Exchange and “Sandwich” Com-
plex Formation Kinetics of Gas Phase Crown Ether–Alkali Cation
Complexes. Int. J. Mass Spectrom. 2001, 204, 171–183.
5. Chu, I.-H.; Zhang, H.; Dearden, D. V. Macrocyclic Chemistry in the Gas
Phase: Intrinsic Cation Affinities and Complexation Rates for Alkali
Metal Cation Complexes of Crown Ethers and Glymes. J. Am. Chem. Soc.
1993, 115, 5736–5744.
6. Oshima, T.; Matsuda, F.; Fukushima, K.; Tamura, H.; Matsubayashi, G.;
Arakawa, R. Selective Cation Binding of Crown Ether Acetals in Electros-
pray Ionization Mass Spectrometry. J. Chem. Soc. Perkin Trans. 1998, 2,
145–148.
7. Sherman, C. L.; Brodbelt, J. S.; Marchand, A. P.; Poola, B. Electrospray
Ionization Mass Spectrometric Detection of Self-Assembly of a Crown
Ether Complex Directed by -Stacking Interactions. J. Am. Soc. Mass
Spectrom. 2005, 16, 1162–1171.
8. Yamaguchi, N.; Gibson, H. W. Noncovalent Chemical Modification of
Crown Ether Side-chain Polymethacrylates with a Secondary Ammo-
nium Salt: A Family of New Polypseudorotaxanes. Macromol. Chem.
Phys. 2000, 201, 815–824.
9. Bryant, W. S.; Guzei, I. A.; Rheingold, A. L.; Merola, J. S.; Gibson H. W.
A Study of the Complexation of Bis(m-Phenylene) Crown Ethers and
Secondary Ammonium Ions. J. Org. Chem. 1998, 63, 7634–7639.
10. Meyer, E. A.; Castellano, R. K.; Diederich, F. Interactions with Aromatic
Rings in Chemical and Biological Recognition. Angew. Chem. Int. Ed.
2003, 42, 1210–1250.
11. Ma, J. C.; Dougherty, D. A. The Cation- Interaction. Chem. Rev. 1997,
97, 1303–1324.
12. Gallivan, J. P.; Dougherty, D. A. Cation- interactions in structural
biology. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9459–9464.
13. Maleknia, S.; Brodbelt, J. Cavity-Size-Dependent Dissociation of Crown
Ether/Ammonium Ion Complexes in the Gas Phase. J. Am. Chem. Soc.
1993, 115, 2837–2843.
14. Colton, R.; Mitchell, S.; Traeger, J. C. Interactions of Some Crown Ethers,
Cyclam, and Its Tetrathia Analogue with Alkali, Alkali Earth, and Other
Metal Ions: An Electrospray Mass Spectrometric Study. Inorg. Chim.
Acta 1995, 231, 87–93.
15. Emsley, J. The Elements. Oxford Chemistry Guides 2nd ed.; Clarendon
Press: Oxford, 1991; p. 156, 186.
16. Fran´ski, M.; Przybysz, I.; Borkowska, M.; Kozik, T. Cationization Versus
Surface Activity—The Effect on Electrospray Ionization. Eur. J. Mass
Spectrom. 2006, 12, 15–18.
17. Fran´ski, R.; Gierczyk B.; Schroeder, G. Anion- Interactions—Interactions
Between Benzo-Crown Ether Metal Cation Complexes and Counter Ion.
J. Am. Soc. Mass. Spectrom. 2009, 20, 257–262.
18. Leize, E.; Jaffrezic A. A.; Van Dorsselaer, A. Correlation Between
Solvation Energies and Electrospray Mass Spectrometric Response
Factors. Study by Electrospray Mass Spectrometry of Supramolecular
Complexes in Thermodynamic Equilibrium in Solution. J. Mass Spec-
trom. 1996, 31, 537–544.
19. Reyzer, M. L.; Brodbelt, J. S.; Marchand, A. P.; Chen, Z.; Huang Z.;
Namboothiri, I. N. N. Determination of Alkali Metal Binding Selectiv-
ities of Caged Crown Ligands by Electrospray Ionization Quadrupole
Ion Trap Mass Spectrometry. Int. J. Mass Spectrom. 2001, 204, 133–142.
20. Fran´ski, R.; Schroeder, G.; Gierczyk, B.; Niedziałkowski, P.; Ossowski,
T. Formation of Stoichiometric Complexes between Dibenzo-30-
Crown-10 and Guanidinium Moiety Containing Compounds. Int. J.
Mass Spectrom. 2007, 266, 180–184.
Figure 4. ESI mass spectra, in m/z range of 2:1 complexes,
obtained after adding RbClO4 (left) and CsClO4 (right) to the
analyzed methanol solution; [(NH2B15C5)2 ϩ Rb]ϩ m/z 651,
[(NO2B15C5)2 ϩ Rb]ϩ m/z 711, [NH2B15C5 ϩ NO2B15C5 ϩ Rb]ϩ
m/z 681, [(NH2B15C5)2 ϩ Cs]ϩ m/z 699, [(NO2B15C5)2 ϩ Cs]ϩ m/z
759, [NH2B15C5 ϩ NO2B15C5 ϩ Cs]ϩ m/z 729.
However, a significant increase in the abundance of the
mixed-ligand complex relative to the homo-ligand com-
plexes was never observed.
As described in detail by Sherman et al. [7], the size of
the metal cation is of crucial importance for the contribu-
more abundant than the homo-ligand complexes for ru-
bidium but not for cesium.
Because of the large radius of the Csϩ cation, the
interaction between aromatic rings is not possible.
This finding is additional confirmation that in the
[NH2B15C5 ϩ NO2B15C5 ϩ K]ϩ ions (and also in
[NH2B15C5 ϩ NO2B15C5 ϩ Rb]ϩ ions), -stacking
interactions are important.
Appendix A
Supplementary Material
Supplementary material associated with this article