764
C. W. Lindsley et al. / Bioorg. Med. Chem. Lett. 15 (2005) 761–764
Table 2. Structures and activities for quinoxalines 16
Acknowledgements
The authors wish to thank Dr. Charles W. Ross III for
obtaining HRMS data and Dr. Sandor Varga for NMR
work to identify and characterize the regioisomeric quin-
oxalines and pyrazinones.
Compd
R
Akt1 IC50 Akt2 IC50 Akt3 IC50
(nM)a
(nM)a
(nM)a
References and notes
16a
16b
16c
16d
16e
16f
6-COOH
7-COOH
240
166
63
281
388
65
>50,000
3200
1228
1. For excellent reviews on Akt see: (a) Graff, J. R. Expert
Opin. Ther. Targets 2002, 6, 103; (b) Nicholson, K. M.;
Anderson, N. G. Cell. Signal. 2002, 14, 381; (c) Li, Q.;
Zhu, G.-D. Curr. Top. Med. Chem. 2002, 2, 939.
2. (a) Hanks, S.; Hunter, T. FASEB 1995, 9, 576; (b) Zinda,
M. J.; Johnson, M. A.; Paul, J. D.; Horn, C.; Konicek, B.
W.; Lu, Z. H.; Sandusky, G.; Thomas, J. E.; Neubauer, B.
L.; Lai, M. T.; Graff, J. R. Clin. Cancer Res. 2001, 7,
2475.
3. (a) Hsu, J. H.; Shi, Y.; Hu, L. P.; Fisher, M.; Franke, T.
F.; Lichtenstein, A. Oncogene 2002, 21, 1391; (b) Page, C.;
Lin, H.; Jin, Y.; Castle, V. P.; Nunez, G.; Huang, M.; Lin,
J. Anticancer Res. 2000, 20, 407.
4. (a) Cheng, J. Q.; Ruggeri, B.; Klein, W. M.; Sonoda, G.;
Altomare, D. A.; Watson, D. K.; Testa, J. R. Proc.
Natl. Acad. Sci. U.S.A. 1996, 93, 3636; (b) Haas-Kogan,
D.; Shalev, N.; Wong, M.; Mills, G.; Yount, G.;
Stokoe, D. Curr. Biol. 1998, 8, 1195; (c) Staal, S. P. Proc.
Natl. Acad. Sci. U.S.A. 1987, 84, 5034; (d) Brognard, J.;
Clark, A. S.; Ni, Y.; Dennis, P. A. Cancer Res. 2001, 61,
3986.
6-(2H-tetrazole)
7-(2H-tetrazole)
20
144
1877
332
1613
>50,000
>50,000
6-(2-Me-tetrazole) 1089
7(-2-Me-tetrazole) 55
16g
16h
85
58
300
210
2400
2119
a Average of at least three measurements; enzyme protocol.7 All
compounds >50,000nM versus PKA, PKC, SGK Regioisomers
assigned by 2-D NMR and NOE.
As anticipated from data obtained in caspase-3 assays
with a 1:1 mixture of 13b:14f (Fig. 4), the dual Akt1/
Akt2 inhibitor 16h displayed a similar profile. When
LnCaP cells were pretreated with 16h and then incu-
bated with TRAIL, a dramatic increase in caspase-3
activity (6–10-fold relative to control or TRAIL alone)
was observed.8,13 This sensitization of tumor cell lines
with 16h was not limited to LnCaP cells as similar apop-
tosis induction was observed in HT29, MCF7, and
A2780 cells, among others, with chemosensitizers such
as camptothecin, herceptin, and doxorubicin.8 Based
on these encouraging data, a mouse PD study was
undertaken to determine if 16h could inhibit Akt phos-
phorylation in vivo. Mice were dosed with 16h (ip,
50mpk, 3 doses, every 90min) achieving plasma concen-
trations of 1.5–2.0lM, and then the animals were tail
vein injected with IGF to stimulate Akt phosphoryl-
ation. By IP Western, both basal and IGF stimulated
Akt1 and Akt2 phosphorylation were inhibited in
mouse lung, with no effect on Akt3 phosphorylation.8
5. Kozikowski, A. P.; Sun, H.; Brognard, J.; Dennis, P. A.
J. Am. Chem. Soc. 2003, 125, 1144.
6. Breitenlechner, C. B.; Wegge, T.; Berillon, L.; Graul, K.;
Marzenell, K.; Friebe, W.; Thomas, U.; Huber, R.; Engh,
R. A.; Masjost, B. J. Med. Chem. 2004, 47, 1375.
7. For Akt enzyme assay details and the proposed model for
the allosteric mode of inhibition of these inhibitors, see:
Barnett, S. F.; Defeo-Jones, D.; Fu, S.; Hancock, P. J.;
Haskell, K. M.; Jones, R. E.; Kahana, J. A.; Kral, A.;
Leander, K.; Lee, L. L.; Malinowski, J.; McAvoy, E. M.;
Nahas, D. D.; Robinson, R.; Huber, H. E. Biochemistry,
in press.
8. For details on the Akt IPKA assay, the caspase-3 assay
and the in vivo experiment with 16h, see: Jones, R. E.;
Defeo-Jones, D.; Fu, S.; Barnett, S. F.; Hancock, P. J.;
Haskell, K. M.; Jones, R. E.; Leander, K.; Lee,
L. L.; Malinowski, J.; McAvoy, E. M.; Nahas, D. D.;
Robinson, R.; Huber, H. E.; Lindsley, C. W.; Zhao, Z.;
Duggan, M. E. Mol. Cancer Ther., in press.
In summary, two novel series of selective, allosteric Akt
(PKB) kinase inhibitors have been developed based on
either a 2,3-diphenylquinoxaline core or a 5,6-diphenyl-
pyrazin-2(1H)-one core. These potent Akt1 selective and
Akt2 selective inhibitors demonstrated that both Akt1
and Akt2 must be inhibited for a maximal apoptotic
response. An optimized dual Akt1/Akt2 inhibitor was
shown to sensitize tumor cells to induce apoptosis when
combined with a number of chemotherapeutic agents
and biologicals, such as TRAIL, and inhibit the phos-
phorylation of Akt1 and Akt2 in vivo. Moreover, this
work has demonstrated that it is possible to develop spe-
cific Akt inhibitors (versus PKA, PKC, and SGK) as
well as isozyme selective Akt inhibitors.
9. (a) Lindsley, C. W.; Zhao, Z.; Leister, W. H. Tetrahedron
Lett. 2002, 43, 4225; (b) Zhang, W.; Curran, D. P.; Chen,
C. H.-T. Tetrahedron 2002, 58, 3871.
10. Leister, W.; Strauss, K.; Wisnoski, D.; Zhao, Z.; Lindsley,
C. W. J. Comb. Chem. 2003, 5, 322, Note, all compounds
purified to >98% by mass-guided prep HPLC and fully
characterized by LCMS, HRMS, and NMR.
11. Zhao, Z.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W.
H.; Wang, Y.; Lindsley, C. W. Tetrahderon Lett. 2004, 45,
4873, and references cited therein.
12. Patchett, A. A.; Nargund, R. P. Annu. Rep. Med. Chem.
2000, 35, 289, and references cited therein.
13. Rokhlin, G. W.; Guseva, N. V.; Tagiyev, A. F.; Glover, R.
A.; Cohen, M. B. The Prostate 2002, 52, 1, and references
cited therein.