aldehyde mediated by a chiral catalyst. In fact, Miller
has reported such a process, albeit with low ee values
(3-12%), that employs O’Donnell’s Cinchona alkaloid
derived phase-transfer catalyst.5 Furthermore, the asym-
metric synthesis of â-hydroxy amino acids via enzyme-
catalyzed aldol reactions has been disclosed; however,
these protocols suffer from limited substrate scope,
modest yields, and low diastereoselectivities in some
cases.6 Recently, Maruoka7 and Shibasaki8 have prepared
novel catalysts for direct aldol reactions of glycinate Schiff
bases with a variety of aliphatic aldehydes. Although the
Maruoka catalyst is particularly effective, providing anti-
â-hydroxy-R-amino acid derivatives in high ee (g90%),
we were intrigued with the idea of employing Cinchona
alkaloid based catalysts in these reactions due to their
low cost and ease of synthesis.9 Despite the fact that
Miller previously obtained poor enantioselectivities with
such a catalyst, we felt that the advent of newer, more
active catalysts of this type10 merited a reexamination
of this process. We now report that the trifluorobenzyl-
substituted Cinchona alkaloid derived catalyst reported
by Park and J ew (5, Figure 1)10b effectively catalyzes the
aldol reaction between a glycinate Schiff base and
aliphatic aldehydes under homogeneous conditions. Al-
though the diastereoselectivity is negligible, useful levels
of enantioselectivity (up to 83% ee) can be obtained for
the syn aldol product.
We selected hydrocinnamaldehyde (6a , Table 1) and
tert-butyl glycinate benzophenone imine (7) as the sub-
strates for testing the efficacy of catalysts 1-5 in the
asymmetric aldol reaction. In our hands, the reaction was
extremely sluggish under the biphasic conditions em-
ployed by Maruoka in the identical reaction catalyzed by
chiral ammonium salts derived from BINOL.7 Trace
amounts of aldol products were detected along with
several byproducts presumably formed by aldehyde self-
condensation.11 In contrast, use of the phosphazene base
tert-butyliminotri(pyrrolidino)phosphorane (BTTP) under
Asym m etr ic Syn th esis of â-Hyd r oxy Am in o
Acid s via Ald ol Rea ction s Ca ta lyzed by
Ch ir a l Am m on iu m Sa lts
Sashikumar Mettath, G. S. C. Srikanth,
Benjamin S. Dangerfield, and Steven L. Castle*
Department of Chemistry and Biochemistry, Brigham Young
University, Provo, Utah 84602
scastle@chem.byu.edu
Received April 28, 2004
Abstr a ct: The Cinchona alkaloid derived chiral ammonium
salt developed by Park and J ew functions as an effective
catalyst for the synthesis of â-hydroxy R-amino acids via
asymmetric aldol reactions under homogeneous conditions.
The syn diastereomers are obtained in good ee, and aryl-
substituted aliphatic aldehydes are the best substrates for
the reaction. These results represent the highest ee’s
obtained to date in direct aldol reactions of glycine equiva-
lents catalyzed by inexpensive, readily prepared chiral
ammonium salts.
â-Hydroxy R-amino acids are constituents of several
complex bioactive peptide natural products.1 In addition,
they are useful chiral intermediates due to their ability
to undergo a variety of transformations.2 Accordingly,
several methods have been devised for their synthesis,
many of which require a stoichiometric amount of a chiral
auxiliary.3,4 A particularly attractive approach involves
the direct aldol reaction of a glycine equivalent with an
(1) (a) Boger, D. L. Med. Res. Rev. 2001, 21, 356. (b) Nicolaou, K.
C.; Boddy, C. N. C.; Bra¨se, S.; Winssinger, N. Angew. Chem., Int. Ed.
1999, 38, 2097. (c) Blaskovich, M. A.; Evindar, G.; Rose, N. G. W.;
Wilkinson, S.; Luo, Y.; Lajoie G. A. J . Org. Chem. 1998, 63, 3631 and
references therein.
(2) (a) Misner, J . W.; Fisher, J . W.; Gardner, J . P.; Pedersen. S. W.;
Trinkle, K. L.; J ackson, B. G.; Zhang, T. Y. Tetrahedron Lett. 2003,
44, 5991. (b) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599.
(c) Lotz, B. T.; Miller, M. J . J . Org. Chem. 1993, 58, 618. (d) Miller, M.
J . Acc. Chem. Res. 1986, 19, 49. (e) Pansare, S. V.; Vederas, J . C. J .
Org. Chem. 1987, 52, 4804. (f) Floyd, D. M.; Fritz, A. W.; Pluscec, J .;
Weaver, E. R.; Cimarusti, C. M. J . Org. Chem. 1982, 47, 5160.
(3) Recent chiral auxiliary or reagent-based syntheses: (a) Mac-
Millan, J . B.; Molinski, T. F. Org. Lett. 2002, 4, 1883. (b) Belokon, Y.
N.; Kochetkov, K. A.; Ikonnikov, N. S.; Strelkova, T. V.; Harutyunyan,
S. R.; Saghiyan, A. S. Tetrahedron: Asymmetry 2001, 12, 481. (c)
Caddick, S.; Parr, N. J .; Pritchard, M. C. Tetrahedron Lett. 2000, 41,
5963. (d) Davis, F. A.; Srirajan, V.; Fanelli, D. L.; Portonovo, P. J . Org.
Chem. 2000, 65, 7663. (e) Avenoza, A.; Cativiela, C.; Corzana, F.;
Peregrina, J . M.; Zurbano, M. M. Tetrahedron: Asymmetry 2000, 11,
2195. (f) Di Felice, P.; Porzi, G.; Sandri, S. Tetrahedron: Asymmetry
1999, 10, 2191. (g) Hutton, C. A. Org. Lett. 1999, 1, 295. (h) Alker, D.;
Hamblett, G.; Harwood: L. M.; Robertson, S. M.; Watkin, D. J .;
Williams, C. E. Tetrahedron 1998, 54, 6089. (i) Iwanowicz, E. J .;
Blomgren, P.; Cheng, P. T. W.; Smith, K.; Lau, W. F.; Pan, Y. Y.; Gu,
H. H.; Malley, M. F.; Gougoutas, J . Z. Synlett 1998, 664.
(4) Recent syntheses employing a chiral catalyst: (a) Mordant, C.;
Du¨nkelmann, P.; Ratovelomanana-Vidal, V.; Genet, J .-P. Chem. Com-
mun. 2004, 1296. (b) Makino, K.; Goto, T.; Hiroki, Y.; Hamada, Y.
Angew. Chem., Int. Ed. 2004, 43, 882. (c) Evans, D. A.; J aney, J . M.;
Magomedov, N.; Tedrow, J . S. Angew Chem., Int. Ed. 2001, 40, 1884.
(d) Park, H.; Cao, B.; J oullie´, M. M. J . Org. Chem. 2001, 66, 7223. (e)
Horikawa, M.; Busch-Petersen, J .; Corey, E. J . Tetrahedron Lett. 1999,
40, 3843. (f) Kuwano, R.; Okuda, S.; Ito, Y. J . Org. Chem. 1998, 63,
3499. (g) Tao, B.; Schlingloff, G.; Sharpless, K. B. Tetrahedron Lett.
1998, 39, 2507. (h) Suga, H.; Ikai, K.; Ibata, T. Tetrahedron Lett. 1998,
39, 869.
(5) (a) Gasparski, C. M.; Miller, M. J . Tetrahedron 1991, 47, 5367.
(b) O’Donnell, M. J .; Wu, S.; Huffman, J . C. Tetrahedron 1994, 50,
4507.
(6) (a) J ackson, B. G.; Pedersen, S. W.; Fisher, J . W.; Misner, J . W.;
Gardner, J . P.; Staszak, M. A.; Doecke, C.; Rizzo, J .; Aikins, J .; Farkas,
E.; Trinkle, K. L.; Vicenzi, J .; Reinhard, M.; Kroeff, E. P.; Higgin-
botham, C. A.; Gazak, R. J .; Zhang, T. Y. Tetrahedron 2000, 56, 5667.
(b) Kimura, T.; Vassilev, V. P.; Shen, G.-J .; Wong, C.-H. J . Am. Chem.
Soc. 1997, 119, 11734. (c) Miller, M. J .; Richardson, S. K. J . Mol. Catal.
B: Enzym. 1996, 1, 161. (d) Lotz, B. T.; Gasparski, C. M.; Peterson,
K.; Miller, M. J . J . Chem. Soc., Chem. Commun. 1990, 1107.
(7) Ooi, T.; Taniguchi, M.; Kameda, M.; Maruoka, K. Angew. Chem.,
Int. Ed. 2002, 41, 4542.
(8) Yoshikawa, N.; Shibasaki, M. Tetrahedron 2002, 58, 8289.
(9) (-)-Cinchonidine can be purchased for $0.61/g (Aldrich); in
contrast, (S)-BINOL, the chiral component of the Maruoka and
Shibasaki, catalysts, costs $36/g (Aldrich). The catalysts used in this
study were synthesized from (-)-cinchonidine in two to three steps,
whereas Maruoka’s catalyst requires a longest linear sequence of 11
steps (see: Ooi, T.; Kameda, M.; Maruoka, K. J . Am. Chem. Soc. 2003,
125, 5139).
(10) (a) Park, H.-g.; J eong, B.-S.; Yoo, M.-S.; Lee, J .-H.; Park, B.-s.;
Kim, M. G.; J ew, S.-s. Tetrahedron Lett. 2003, 44, 3497. (b) J ew, S.-s.;
Yoo, M.-S.; J eong, B.-S.; Park, I.-Y.; Park, H.-g. Org. Lett. 2002, 4, 4245.
(c) Park, H.-g.; J eong, B.-S.; Yoo, M.-S.; Lee, J .-H.; Park, M.-k.; Lee,
Y.-J .; Kim, M.-J .; J ew, S.-s. Angew. Chem., Int. Ed. 2002, 41, 3036. (d)
Corey, E. J .; Xu, F.; Noe, M. C. J . Am. Chem. Soc. 1997, 119, 12414.
(e) For a review on the use of phase-transfer catalysts in amino acid
synthesis, see: Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013.
10.1021/jo049283u CCC: $27.50 © 2004 American Chemical Society
Published on Web 08/19/2004
J . Org. Chem. 2004, 69, 6489-6492
6489