10.1002/chem.201805430
Chemistry - A European Journal
FULL PAPER
[5] a) R. Shu, L. Hao, J. F. Harrod, H.-G. Woo and E. Samuel, J. Am.
Chem. Soc. 1998, 120, 12988-12989; b) J. D. Masuda, A. J. Hoskin,
T. W. Graham, C. Beddie, M. C. Fermin, N. Etkin and D. W. Stephan,
Chem. Eur. J. 2006, 12, 8696-8707; c) A. Perrier, V. Comte, C. Moïse
and P. Le Gendre, Chem. Eur. J. 2010, 16, 64-67.
involved in bonds and the single electron is bound to interact with the
lone pair of the phosphido ligand. This leads to a bent geometry, a
classical situation in phosphido ligand chemistry (see ref 2d).
1
1
[25] H NMR signals were assigned unambiguously through H-13C
correlation experiments, i.e. HSQC and HMBC. Also, the 31P
spectrum of 3b shows that the hydrogens on C11 couple with P1, not
P2. See supporting information.
[6] a) F. Basuli, J. Tomaszewski, J. C. Huffman and D. J. Mindiola, J.
Am. Chem. Soc. 2003, 125, 10170-10171; b) F. Basuli, L. A. Watson,
J. C. Huffman and D. J. Mindiola, Dalton Trans. 2003, 4228-4229; c)
B. C. Bailey, J. C. Huffman, D. J. Mindiola, W. Weng and O. V. Ozerov,
Organometallics 2005, 24, 1390-1393; d) G. Zhao, F. Basuli, U. J.
Kilgore, H. Fan, H. Aneetha, J. C. Huffman, G. Wu and D. J. Mindiola,
J. Am. Chem. Soc. 2006, 128, 13575-13585; e) B. F. Wicker, J. Scott,
J. G. Andino, X. Gao, H. Park, M. Pink and D. J. Mindiola, J. Am.
Chem. Soc. 2010, 132, 3691-3693.
[7] a) A. T. Normand, C. G. Daniliuc, B. Wibbeling, G. Kehr, P. Le
Gendre and G. Erker, J. Am. Chem. Soc. 2015, 137, 10796-10808; b)
A. T. Normand, C. G. Daniliuc, G. Kehr, P. Le Gendre and G. Erker,
Dalton Trans. 2016, 45, 3711-3714.
[26] O. Kühl The Range of Chemical Shifts, Coupling Constants, and
What Influences Each, in Phosphorus-31 NMR Spectroscopy: A
Concise Introduction for the Synthetic Organic and Organometallic
Chemist, (Ed. O. Kühl), Springer Berlin Heidelberg, Berlin, Heidelberg,
2008, pp. 7-23.
3
[27] Differences between JPH coupling constants in CpCH2CH2PR2
ligands have been observed before, see for example Janssen, K.;
Butenschon, H., New J. Chem. 2011, 35, 2287-2298.
[28] The exact chemical shift could not be ascertained due to multiple
overlaps in the 1H NMR spectrum of 3d.
[29] S. Halbert, C. Copéret, C. Raynaud and O. Eisenstein, J. Am.
Chem. Soc. 2016, 138, 2261-2272.
[8] F. Silveira, L. M. T. Simplício, Z. N. d. Rocha and J. H. Z. d. Santos,
Appl. Cat. A 2008, 344, 98-106.
[9] This was first observed by Issleib in 1964, see ref 1a. In this case
further reduction of [TiCl4.(2THF)] to Ti(II) gave the intriguing
homoleptic complex [Ti(PCy2)2].
[30] We also observed small intensity (ε = 2210-3220 cm-1.M-1)
shouldering bands in the UV region (3b -> 348 nm; 3c -> 342 nm; 3d
-> 346 nm), although we were unable to assign them through DFT
calculations.
[10] The phosphinyl radical then recombines to form a diphosphane
(R2P-PR2).
[31] although the absence of (PCy2)2 is surprising in the case of 3f, it
could just be that the presence of PCy2H in the reaction mixture
prevents the phosphinyl radical from dimerizing, instead promoting
other termination pathways, e.g. H abstraction from the solvent.
[32] Complex E was characterized in C6D5Br at 299 K, see ref 7a.
[33] a) J. Y. Lan and G. B. Schuster, J. Am. Chem. Soc. 1985, 107,
6710-6711; b) S. T. Murphy, C. Zou, J. B. Miers, R. M. Ballew, D. D.
Dlott and G. B. Schuster, J. Phys. Chem. 1993, 97, 13152-13157; c)
O. Grinevich, P. Serguievski, A. M. Sarker, W. Zhang, A. Mejiritski and
D. C. Neckers, Macromolecules 1999, 32, 328-330.
[34] Y. Hasegawa, G. Kehr, S. Ehrlich, S. Grimme, C. G. Daniliuc and
G. Erker, Chem. Sci. 2014, 5, 797-803.
[11] a) H. Bürger and H.-J. Neese, Zeit. Anorg. Allg. Chem. 1969, 370,
275-282; b) H. Bürger and H. J. Neese, Inorg. Nucl. Chem. Lett. 1970,
6, 299-304.
[12] cationic d0 phosphidotitanocene complexes [Cp2TiP(SiMe3)2]+
and [Cp2Ti(PPh2)(PMe3)]+ have previously been envisaged from a
theoretical perspective : a) M. Ehrig, W. Koch and R. Ahlrichs, Chem.
Phys. Lett. 1991, 180, 109-113; b) J. R. Rogers, T. P. S. Wagner and
D. S. Marynick, Inorg. Chem. 1994, 33, 3104-3110.
[13] a) P. Le Gendre, M. Picquet, P. Richard and C. Moïse, J.
Organomet. Chem. 2002, 643-644, 231-236; b) A. T. Normand, P.
Richard, C. Balan, C. G. Daniliuc, G. Kehr, G. Erker and P. Le Gendre,
Organometallics 2015, 34, 2000-2011.
[14] The first equivalent of phosphide acts as a sacrificial reductant,
generating R2P-PR2 as a by-product.
[35] A. T. Normand, C. G. Daniliuc, B. Wibbeling, G. Kehr, P. Le
Gendre and G. Erker, Chem. Eur. J. 2016, 22, 4285-4293.
[36] Gaussian 09. Revision D. 01. Frisch. M. J. et al. Gaussian. Inc.,
Wallingford CT, 2009
[15] J. W. Lauher and R. Hoffmann, J. Am. Chem. Soc. 1976, 98,
1729-1742.
[37] a) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065;
b) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7,
3297-3305.
[38] a) B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J.
Frisch, F. J. Devlin, S. Gabriel and P. J. Stephens, J. Phys. Chem. A
2002, 106, 6102-6113; b) J. Tomasi, B. Mennucci and R. Cammi,
Chem. Rev. 2005, 105, 2999-3093.
[39] W. Humphrey, A. Dalke and K. Schulten, J. of Mol. Graph. 1996,
14, 33-38.
[40] R. L. Martin, J. Chem. Phys. 2003, 118, 4775-4777.
[41] R. G. Hadt, V. N. Nemykin, J. G. Olsen and P. Basu, Phys. Chem.
Chem. Phys. 2009, 11, 10377-10384.
[42] E. Lerayer, P. Renaut, S. Brandès, H. Cattey, P. Fleurat-Lessard,
G. Bouhadir, D. Bourissou and J.-C. Hierso, Inorg. Chem. 2017, 56,
1966-1973.
[43] a) L. Goerigk and S. Grimme, J. Chem. Theory Comput. 2011, 7,
291-309; b) N. B. Balabanov and K. A. Peterson, J. Chem. Phys. 2005,
123, 064107.
[44] W. Kutzelnigg, U. Fleischer and M. Schindler, (Berlin, Heidelberg)
1991, pp. 165-262.
[16] as noted elsewhere in the case of amidoziroconcene cations (ref
7a), the lone pair of phosphorus would have to be in the equatorial
plane of the bent Cp2M fragment for π interactions to occur.
[17] B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J.
Echeverria, E. Cremades, F. Barragan and S. Alvarez, Dalton Trans.
2008, 2832-2838.
[18] a) M. Nishio, Y. Umezawa, K. Honda, S. Tsuboyama and H.
Suezawa, CrystEngComm 2009, 11, 1757-1788; b) M. Nishio,
CrystEngComm 2004, 6, 130-158.
[19] a) Y. Umezawa and M. Nishio, Bioorg. Med. Chem. 1998, 6, 493-
504; b) X. Xu, B. Pooi, H. Hirao and S. H. Hong, Angew. Chem. Int.
Ed. 2014, 53, 1283-1287.
[20] In order to circumvent hydrolysis by residual water,
measurements were conducted on 10-2M solutions of the complexes
in 0.1mm cells
[21] a) D. Escudero, A. D. Laurent and D. Jacquemin Time-Dependent
Density Functional Theory: A Tool to Explore Excited States, in
Handbook of Computational Chemistry, (Ed. J. Leszczynski),
Springer, Dordrecht, 2015; b) Z. Li and W. Liu, J. Chem. Theory
Comput. 2016, 12, 2517-2527.
[22] a) S. L. Borkowsky, N. C. Baenziger and R. F. Jordan,
Organometallics 1993, 12, 486-495; b) W. Ahlers, B. Temme, G. Erker,
R. Fröhlich and F. Zippel, Organometallics 1997, 16, 1440-1444.
[23] We have previously used phi as an indicator of π interactions
between Zr and N or P in zirconocene complexes, see ref 7a.
[24] It is interesting to note that a clear π interaction was found by
Alhrichs in the Ti(III) [Cp2TiP(SiMe3)2] complex (ref 12a). The Ti-P π
interaction in this complex is possible because the metallocene
fragment is supported only by the phosphide ligand : therefore, the
single electron on titanium and the pπ electrons on phosphorus
occupy orthogonal orbitals This is no longer possible in complexes 2
in which the titanium atom is tetracoordinated: all d orbitals are
This article is protected by copyright. All rights reserved.