Notes and References
† E-mail: stephen.koch@sunysb.edu
‡ Compound 1: 1H NMR ([2H6]DMSO): d 4.25 (s; 6 H; CH2), 6.82 (t; 3 H;
3-H), 6.93 (d; 3 H; 1-H), 7.24 (m; 6 H; 3,4-H), 8.40 [s(br); 1 H; NH+], 10.5
(s; 3 H; OH). FAB-MS: 335 [M+]. Compound 2: 1H NMR (CDCl3): d 2.23
(s; 18 H; CH3), 3.61 (s; 6 H; CH2), 6.52 [s(br); 3 H; OH], 6.72 (s; 3 H; 6-H),
6.84 (s; 3 H; 4-H). FAB-MS: 419 [M+].
§ Crystal data for 6 (crystallized from DMF–isopropanol): FeC25H24N3O3,
M = 469.85, monoclinic, space group P21/c, a = 14.837(3), b = 9.410(8),
c = 17.162(3) Å, b = 110.836(9)°, U = 2239(1) Å3, Z = 4, Mo-Ka
radiation (l = 0.71073 Å), m = 7.016 cm21. The structure was solved and
refined using standard crystallographic techniques with R(Rw)
0.040(0.039) for 1993 observed reflections I 3s(I). For 7: Fe-
31H36O3N3, M = 554.49, monoclinic, space group P21/n, a = 16.409(4),
=
>
C
b = 10.841(1), c = 17.082(4) Å, b = 110.37(1)°, U = 2849(1) Å3, Z = 4,
m(Mo-Ka) = 7.127 cm21; R(Rw) = 0.053(0.025) for 1733 reflections I >
3s(I). For 8: FeC24H25N2O4, M = 449.3, monoclinic, space group P21/c, a
= 14.670(3), b = 9.413(9), c = 16.807(3) Å, b = 108.054(8)°, U =
2206(1) Å3, Z = 4, m(Mo-Ka) = 5.65 cm21, R(Rw) = 0.039(0.047) for
2888 observed reflections I > 3s(I). For 9 (crystallized from DMF–
MeOH): FeC33H26N3O3, M = 568.44, monoclinic, space group P21/c, a =
12.042(3), b = 18.356(3), c = 12.713(4) Å, b = 110.02(1)°, U = 2640(2)
Å3, Z = 4, m(Mo-Ka) = 6.087 cm21, R(Rw) = 0.050(0.044) for 2888
observed reflections I > 3s(I). CCDC 182/921.
Fig. 2 Structural diagram for [Fe{N(CH2-o-C6H4O)3}(phen)] (9). Selected
distances (Å) and angles (°): Fe1–O1 1.897(6); Fe1–O2 1.926(6); Fe1–O3
1.893(7); Fe1–N1 2.225(8); Fe1–N2 2.158(7); Fe1–N3 2.340(7); N1–Fe–
O3 91.5(3); O3–Fe–N2 87.7(3); N2–Fe–N3 73.9(3); N3–Fe–N1 107.0(3);
O1–Fe–O2 164.1(3); N–Fe–O2avg 88.4(3); N–Fe–O1avg 87.5(3); Fe–
O–Cavg 128.5(7).
1 L. Sacconi and F. Mani, Transition Met. Chem., 1982, 8, 179.
2 F. Mani and L. Sacconi, Comments Inorg. Chem., 1983, 2, 157.
3 C. Bianchini, A. Meli, M. Peruzzini, F. Vizza and F. Zanobini, Coord.
Chem. Rev., 1992, 120, 193.
4 J. G. Verkade, Acc. Chem. Res., 1993, 26, 483.
5 R. R. Schrock, Acc. Chem. Res., 1997, 30, 9.
consistent with the known FeIII coordination chemistry of
thiolate and phenolate ligands.11,16,17 In an attempt to prepare a
four coordinate complex, the reaction of Li3N(CH2-o-C6H4O)3]
with FeCl3 was repeated in the absence of 1-Meim. However the
6 D. H. Ohlendorf, A. M. Orville and J. D. Lipscomb, J. Mol. Biol., 1994,
244, 586; T. Klabunde, N. Sträter, R. Fro¨hlich, H. Witzel and B. Krebs,
J. Mol. Biol., 1996, 259, 737; B. F. Anderson, H. M. Baker, G. E. Norris,
D. W. Rice and E. N. Baker, J. Mol. Biol., 1989, 209, 711; N. Ito, S. E.
V. Phillips, C. Stevens, Z. B. Ogel, M. J. McPherson, J. N. Keen,
K. D. S. Yadav and P. F. Knowles, Nature, 1991, 350, 87.
7 M. H. Chisholm, J.-H. Huang, J. C. Huffman, W. E. Strieb and D.
Tiedtke, Polyhedron, 1997, 17, 2941; K. J. Weller, P. A. Fox, S. D. Gray
and D. E. Wigley, Polyhedron, 1997, 17, 3139 and references therein.
8 G. Zemplén and A. Kunz, Chem. Ber., 1922, 55, 979.
9 K. Hultzsch, Chem. Ber., 1949, 82, 16.
10 J. L. Kelley, J. A. Linn and J. W. T. Selway, J. Med. Chem., 1989, 32;
1757.
11 S. A. Koch and M. Millar, J. Am. Chem. Soc., 1982, 104, 5255.
12 K. N. Raymond, S. S. Isied, L. D. Brown, F. R. Fronczek and J. H.
Nibert, J. Am. Chem. Soc., 1976, 98, 1767.
13 C. Moberg, Angew. Chem., Int. Ed. Engl., 1998, 37, 249
14 E. Müller and H.-B. Bürgi, Helv. Chim. Acta, 1987, 70, 520.
15 N. Govindaswamy, D. A. Quarless Jr. and S. A. Koch, J. Am. Chem.
Soc., 1995, 117, 8468.
16 L. E. Maelia, M. Millar and S. A. Koch, Inorg. Chem., 1992, 31,
4594.
17 M. Millar, J. F. Lee, T. O’Sullivan, S. A. Koch and R. Fikar, Inorg.
Chim. Acta, 1996, 243, 333.
18 J. W. Pyrz, A. L. Roe, L. J. Stern and L. Que Jr., J. Am. Chem. Soc.,
1985, 107, 614.
X-ray
structure§
of
the
product,
[Fe{N(CH2-
o-C6H4O)3}(DMF)] (8), revealed that a molecule of solvent was
coordinated to the iron. The crystal of 8 is isomorphous and is
essentially isostructural with 6. The atomic positions of the non-
hydrogen atoms of the DMF molecule are structurally equiva-
lent to five of the atoms of the 1-Meim in 6. The reaction of 8
with 1,10-phenanthroline in DMF followed by the addition of
MeOH gave dark red crystals of [Fe{N(CH2-
o-C6H4O)3}(phen)] (9) in 50% yield. The structure of 9§ (Fig.
2) demonstrates that the tripod ligands can support an
octahedral coordination center. The phen ligand has a distinctly
asymmetric coordination with Fe–N2 2.158(7) Å and Fe–N3
2.340(7) Å distances. The distortion results from a short contact
between a benzyl proton and the hydrogen atom ortho to N3.
Compounds 6–9 have magnetic moments indicative of high
spin Fe3+ and have an intense phenolate to Fe charge transfer
transition at 399 nm (e = 7960 dm3 mol21 cm21), 422 (8320),
405 (9700), and 399 (7751) respectively.18 A quasireversible
FeIII–FeII redox couple was observed in the cyclic voltammo-
gram of 7 occurring at E1/2 = 20.78 V (DE = 107 mV) versus
Ag/AgCl in DMF solution. Only irreversible oxidation proc-
esses were observed for all the compounds.19
19 A. Sokolowski, J. Müller, T. Weyhermüller, R. Schnepf, P. Hildebrandt,
K. Hildenbrand, E. Bothe and K. Wieghardt, J. Am. Chem. Soc., 1997,
119, 8889.
The chemistry of these tripod ligands with other metal ions is
under investigation. We thank the National Institutes of Health
for support.
Received in Bloomington, IN, USA, 14th April 1998; 8/02725K
1668
Chem. Commun., 1998