Advanced Synthesis & Catalysis
10.1002/adsc.202000242
divinybenzene monomer were dissolved in 10 mL of THF
[
[
4] a) J. H. Park, S. Y. Kim, S. M. Kim, Y. K. Chung, Org.
Lett. 2007, 9, 2465-2468; b) Q. Huang, R. Hua, Adv.
Synth. Catal. 2007, 349, 849-852.
2
under an N atmosphere, followed by the addition of 32 mg
(
0.02 mmol) of azobisiso-butyronitrile (AIBN). After
stirring for 30 minutes, the mixture was then transferred into
an autoclave for the polymerization reaction to occur at
5] K. M. Driller, S. Prateeptongkum, R. Jackstell, M.
Beller, Angew. Chem. 2011, 123, 558-562; Angew.
Chem. Int. Ed. 2011, 50, 537-541.
1
00 °C for 24 h. After evaporation of THF at 65 °C under
vacuum, a white solid was obtained and denoted as DVB-
.1-PAM.
0
Typical procedure for preparation of am-ides-
[6] Y. Uenoyama, T. Fukuyama, O. Nobuta, H. Matsubara,
I. Ryu, Angew. Chem. 2005, 117, 1099-1102; Angew.
Chem. Int. Ed. 2005, 44, 1075-1078.
functionalized POPs supported nano-Pd catalyst: DVB-
0
.1-PAM (0.5 g) was dispersed in deionized water (25 mL)
2 4
and K PdCl aqueous solution (1.0 mL, [Pd] 5.0 mg/mL)
was added into the solution under vigorous stirring. After
stirring 3 h, the pH value was adjusted to about 10 using 0.2
M NaOH and the solution was stirred for another 3 h at room
temperature. Then 1.0 mL of hydrazine in 3.0 mL of
deionized water was added to the solution and stirred for 4
h. The solid sample was recovered by centrifugation and
washed with water. The obtained solid was dried at 80 ℃
for 12 h. A gray solid sample was obtained and denoted as
Pd/DVB-0.1-PAM.
[
7] a) X. Ji, B. Gao, X. Zhou, Z. Liu, H. Huang, J. Org.
Chem. 2018, 83, 10134-10141; b) D. L. Wang, W. D.
Guo, Q. Zhou, L. Liu, Y. Lu, Y. Liu, ChemCatChem
2
018, 10, 4264-4268.
[8] a) B. E. Ali, A. El-Ghanam, M. Fettouhi, J. Tijani,
Tetrahedron Lett. 2000, 41, 5761-5764; b) B. E. Ali, J.
Tijani, A. M. El-Ghanam, Appl. Organomet. Chem.
2
002, 16, 369-376; c) B. El Ali, J. Tijani, A. M. El-
Typical procedure for hydroaminocarbonylation of
alkynes with amines: a mixture of phenylacetylene (1.5
mmol), amine (1.0 mmol), Pd/DVB-0.2-PAM-Naph (20
Ghanam, J. Mol. Catal. A: Chem. 2002, 187, 17-33; d)
B. E. Ali, J. T, Appl. Organomet. Chem. 2003, 17, 921-
9
Catal. A: Chem. 2004, 213, 183-186; f) Y. Li, H. Alper,
Z. Yu, Org. Lett. 2006, 8, 5199-5201; g) R. Suleiman, J.
Tijani, B. El Ali, Appl. Organomet. Chem. 2009, 24, 38-
2
mg), NaI (2 mol%), TsOH•H O (2 mol%) and anisole (4
31; e) U. Matteoli, A. Scrivanti, V. Beghetto, J. Mol.
mL) were added a glass tube which was placed in an 100
mL autoclave. After sealing and purging with CO for 3
times, the pressure of CO was adjusted to 4.0 MPa. Then the
reaction mixture was stirred at 120 ℃ for 18 h. After the
reaction finished, the autoclave was cooled to room
temperature and the pressure was carefully released.
4
6; h) J. Liu, H. Li, R. Duhren, J. Liu, A. Spannenberg,
Subsequently, Ph
3
CH was added to mixture for quantitative
R. Franke, R. Jackstell, M. Beller, Angew. Chem. 2017,
129, 12138-12142; Angew. Chem. Int. Ed. 2017, 56,
1
2
1
analysis by H NMR. The crude reaction mixture was
filtered and filtrate was concentrated by rotary evaporator
and purified by column chromatography on a silica gel
column (petroleum ether/ethyl acetate = 100/1-10/1) to give
the desired product 3a.
1976-11980; i) F. Sha, H. Alper, ACS Catal. 2017, 7,
220-2229; j) D.-L. Wang, W.-D. Guo, L. Liu, Q. Zhou,
W.-Y. Liang, Y. Lu, Y. Liu, Catal. Sci. Technol. 2019,
, 1334-1337.
9
Acknowledgements
[9] B. Gao, H. Huang, Org. Lett. 2017, 19, 6260-6263.
[
10] J.-B. Peng, H.-Q. Geng, F.-P. Wu, D. Li, X.-F. Wu, J.
Catal. 2019, 375, 519-523.
Financial supports from the NSFC (21633013, 21802147), the Co-
operation Foundation of Dalian National Laboratory for Clean
Energy of CAS (DNL201901), the Youth Innovation Promotion
Association (2019409), the ‘Light of West China’ Program, Fujian
Innovation Academy and Key Research Program of Frontier
Sciences of CAS (QYZDJ-SSW-SLH051), are gratefully
acknowledged.
[
[
11] L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981-5079.
12] a) E. L. Margelefsky, R. K. Zeidan, M. E. Davis, Chem.
Soc. Rev. 2008, 37, 1118-1126; b) P. Murugan, M.
Krishnamurthy, S. N. Jaisankar, D. Samanta, A. B.
Mandal, Chem. Soc. Rev. 2015, 44, 3212-3243; c) L. J.
Konwar, P. Maki-Arvela, J. P. Mikkola, Chem. Rev.
References
2
019, 119, 11576-11630; d) V. Thakur, S. Kumar, P.
[
1] a) Catalytic Carbonylation Reactions, Springer Berlin,
006; b) Modern Carbonylation Methods, Wiley-VCH,
Weinheim, 2008; c) M. Beller, X.-F. Wu, Transition-
Metal-Catalyzed Carbonylation Reactions:
Das, Catal. Sci. Technol. 2017, 7, 3692-3697; e) Z. B.
Shifrina, V. G. Matveeva, L. M. Bronstein, Chem. Rev.
2020, 120, 1350-1396.
2
[
13] a) R. Y. Zhu, M. E. Farmer, Y. Q. Chen, J. Q. Yu,
Angew. Chem. 2016, 128, 10734-10756; Angew. Chem.
Int. Ed. 2016, 55, 10578-10599; b) C. Sambiagio, D.
Schonbauer, R. Blieck, T. Dao-Huy, G. Pototschnig, P.
Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T.
Besset, B. U. W. Maes, M. Schnurch, Chem. Soc. Rev.
2018, 47, 6603-6743.
Carbonylative Activation of C-X Bonds, Springer,
Berlin, 2013.
[
[
2] a) X. F. Wu, X. Fang, L. Wu, R. Jackstell, H. Neumann,
M. Beller, Acc. Chem. Res. 2014, 47, 1041-1053; b) T.
N. Reddy, D. P. de Lima, Asian J. Org. Chem. 2019, 8,
1
227-1262; c) Z. Huang, S. Wu, Y. Li, J. Mol. Catal.
(China) 2019, 33, 578-591.
[
[
14] a) Q. Sun, Z. Dai, X. Meng, L. Wang, F.-S. Xiao, ACS
Catal. 2015, 5, 4556-4567; b) Q. Sun, Z. Dai, X. Meng,
F.-S. Xiao, Chem. Soc. Rev. 2015, 44, 6018-6034.
3] a) The Amide Linkage: Selected Structural Aspects in
Chemistry, Biochemistry and Materials Science, Wiley-
VCH, New York, 2000; b) X. Guo, A. Facchetti, T. J.
Marks, Chem. Rev. 2014, 114, 8943-9021; c) J. R.
Dunetz, J. Magano, G. A. Weisenburger, Org. Process
Res. Dev. 2016, 20, 140-177.
15] a) D. Wu, F. Xu, B. Sun, R. Fu, H. He, K.
Matyjaszewski, Chem. Rev. 2012, 112, 3959-4015; b) Y.
Zhang, S. N. Riduan, Chem. Soc. Rev. 2012, 41, 2083-
2
094; c) S. Y. Ding, W. Wang, Chem. Soc. Rev. 2013,
5
This article is protected by copyright. All rights reserved.