7
44
M. Penso et al.
LETTER
(9) March, J. Advanced Organic Chemistry, 4th ed.; Wiley-
Interscience: New York, 1992, 251.
10) Penso, M.; Albanese, D.; Landini, D.; Lupi, V.; Tricarico, G.
Eur. J. Org. Chem. 2003, 4513.
11) Typical Procedure for the N-Alkylation: Synthesis of
L-N-Allyl-N-(2-nitrophenyl)sulfonyl Tyrosine Methyl
Ester (11a).
Acknowledgment
This work was supported by CNR (Italy) and MIUR (Rome).
(
(
References and Notes
(
(
1) Petrillo, E. W.; Ondetti, M. A. Med. Res. Rev. 1982, 2, 1.
2) (a) Bhatt, U.; Mohamed, N.; Just, G.; Roberts, E.
Tetrahedron Lett. 1997, 38, 3679. (b) Pohlmann, A.;
Schanen, V.; Guillaume, D.; Quirion, J.-C.; Husson, H.-P. J.
Org. Chem. 1997, 62, 1016.
In a dried flask, lyophilized sodium carbonate (424 mg, 4
mmol) was added to a solution of 9 (380 mg, 1 mmol), allyl
bromide (2a, 242 mg, 2 mmol) and tetrabutylammonium
hydrogensulfate (34 mg, 0.1 mmol) in anhyd DMSO (2.5
mL). The heterogeneous mixture was stirred at 30 °C for 6
h, controlling by TLC analysis (EtOAc–hexane, 2:3), then
the crude was diluted with EtOAc (10 mL), washed with an
(3) (a) Miller, S. C.; Scanlan, T. S. J. Am. Chem. Soc. 1998, 120,
2
1
1
690. (b) Manavalan, P.; Momany, F. A. Biopolymers 1980,
9, 1943. (c) Dorow, R. L.; Gingrich, D. E. J. Org. Chem.
995, 60, 4986; and references therein. (d) Cheung, S. T.;
Benoiton, N. L. Can. J. Chem. 1977, 55, 906. (e) Rich, D.
H.; Tam, J.; Mathiaparanam, P.; Grant, J. Synthesis 1975,
aq sat. solution of NH Cl (2.5 mL), then with brine (2 × 5
4
mL). The aqueous phases were extracted with EtOAc (5 × 5
mL); the organic phases were collected and washed with
H O (5 mL), brine (2 × 5 mL) and dried over MgSO . The
4
02.
4) (a) Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett.
995, 36, 6373. (b) Kan, T.; Kobayashi, H.; Fukuyama, T.
2
4
solvent was distilled under vacuum and the residue was
purified by flash chromatography (EtOAc–hexane, 2:3).
(
1
N-Allyl derivative 11a, pale yellow oil (412 mg, 98%); ee
Synlett 2002, 1338. (c) Kan, T.; Kobayashi, H.; Fukuyama,
T. Synlett 2002, 697. (d) Fukuyama, T.; Cheung, M.; Jow,
C.-K.; Hidai, Y.; Kan, T. Tetrahedron Lett. 1997, 38, 5831;
and references therein.
®
1
00% [HPLC: column CHIRALPAK AD (Daicel); 25 °C;
i-PrOH–hexane (15:85); flow 0.8 mL/min; l = 266.8 nm; t
R
2
0
1
2
7.575 min]; [a]D –23.6 (c 0.83, CHCl ). H NMR
3
(
CDCl ): d = 7.84 (d, 1 H, J = 7.6 Hz), 7.64 (d, 1 H, J = 7.6
(
(
(
5) Bowman, W. R.; Coghlan, D. R. Tetrahedron 1997, 53,
3
Hz), 7.58–7.54 (m, 2 H), 7.07 (d, 2 H, J = 8.1 Hz), 6.68 (d, 2
H, J = 8.4 Hz), 5.85–5.71 (m, 1 H), 5.35 (br s, 1 H), 5.20 (dd,
1
5787.
6) Albanese, D.; Landini, D.; Lupi, V.; Penso, M. Eur. J. Org.
Chem. 2000, 1443.
7) For monographs and reviews see inter alia: (a) Montanari,
F.; Landini, D.; Rolla, F. Top. Curr. Chem. 1982, 101, 147.
1
H, J = 17.3, 1.3 Hz), 5.11 (dd, 1 H, J = 9.9, 1.8 Hz), 4.85
(
t, 1 H, J = 7.4 Hz), 4.13–3.98 (m, 2 H), 3.56 (s, 3 H), 3.27
(
dd, 1 H, J = 14.3, 7.7 Hz), 2.96 (dd, 1 H, J = 14.3, 7.6 Hz).
1
3
C NMR-APT (CDCl ): d = 170.8 (CO), 154.7 (COH),
(
(
b) Makosza, M.; Fedorynki, M. Adv. Catal. 1988, 35, 375.
c) Dehmlow, E. V.; Dehmlow, S. Phase-Transfer Catalysis;
VCH: Weinheim, 1993. (d) Starks, C. M.; Liotta, C.;
Halpern, M. Phase-Transfer Catalysis. Fundamentals,
Applications and Industrial Perspectives; Chapman and
Hall: New York, 1994.
3
1
48.0 (CNO ), 134.2 (CH=), 133.6 (CH), 133.2 (CSO ),
2
2
1
31.6 (CH), 131.0 (CH), 130.4 (2 CH), 128.0 (C ), 124.0
Ph
(
(
CH), 118.5 (CH =), 115.4 (2 CH), 61.4 (CH-N), 52.2
2
OCH ), 48.8 (CH N), 35.5 (CH Ph). Anal. Calcd for
3
2
2
C H N O S (420.44): C, 54.28; H, 4.79; N, 6.66. Found: C,
19 20
2
7
54.37; H, 4.76; N, 6.69.
(
8) Nyasse, B.; Grehn, L.; Ragnarsson, U.; Maia, H. L. S.;
Monteiro, L. S.; Leito, I.; Koppel, I.; Koppel, J. J. Chem.
Soc., Perkin Trans. 1 1995, 2025.
(
12) Reichardt, C. Solvents and Solvent Effects in Organic
Chemistry; Wiley-VCH: Weinheim, 2003, 246–250.
Synlett 2006, No. 5, 741–744 © Thieme Stuttgart · New York