Bis-Aminals of Linear Tetraamines
(10 equiv.) in ethanol (5 mL) at Ϫ10 °C. After 2 h of vigorous characterised by frequency analysis. The correlation between the
FULL PAPER
stirring, the reaction was quenched by addition of HCl (4 ) and
the ethanol was evaporated. The acidic aqueous phase was washed
with dichloromethane (3 ϫ 20 mL), neutralised with NaOH (4 ),
then washed with dichloromethane (3 ϫ 20 cm3). The organic
phase was dried with Na2SO4 for one hour, then filtered. The solv-
ent was evaporated and the residue was dried under vacuum. The
products, a mixture of the starting tetraamines and piperazines 25
to 33, were obtained as colourless oils.
calculated transition states, the reactants and the products was
checked with the IRC (Reverse/ Forward) option.
Acknowledgments
We are grateful to IDRIS (CNRS, Orsay) for calculations facilities
´
and to A. Laporte (Universite de Pau et des Pays de l’Adour) for
helpful discussions.
[1]
Compounds Obtained with Glyoxal
H. Stetter, Chem. Ber. 1953, 69Ϫ74.
[2]
B. Fuchs, A. Ellencweig, Journal of the Royal Netherlands
Compound 25: 13C NMR (CDCl3): δ ϭ 38.8, 53.3 (2), 61.2
(NCH2N) ppm. ESI-MS for C8H20N4 (MeOH): m/z ϭ 173.2 [M
ϩ H]ϩ.
Chemical Society, 1979, 3541Ϫ3544.
[3] [3a]
´
G. Herve, H. Bernard, N. Le Bris, M. Le Baccon, J. J. Yaou-
anc, H. Handel, Tetrahedron Lett. 1999, 40, 2517Ϫ2520. [3b] G.
´
Herve, H. Bernard, N. Le Bris, J. J. Yaouanc, H. Handel, L.
Compound 26: 13C NMR (CDCl3): δ ϭ 26.9 (NCH2CH2CH2N),
41.7, 46.1 (2), 48.4, 52.5, 54.6 (2), 57.3 (NCH2N) ppm. ESI-MS for
C9H22N4 (MeOH): m/z ϭ 187.3 [M ϩ H]ϩ.
[3c]
Toupet, Tetrahedron Lett. 1998, 39, 6861Ϫ6864.
Interna-
[3d]
tional Patent, Nycomed Imaging, No. WO 96/28432, 1996.
International Patent, Bracco S. P. A, No. WO 97/49691, 1997.
[4]
[5]
[6]
[7]
[8]
´
G. Herve, N. Le Bris, H. Bernard, J. J. Yaouanc, H. des Ab-
Compound 27: 13C NMR (CDCl3): δ ϭ 30.3 (NCH2CH2CH2N),
40.6, 53.1 (2), 56.3 (NCH2N) ppm. ESI-MS for C10H24N4 (MeOH):
m/z ϭ 204.4 [M ϩ H]ϩ.
bayes, H. Handel, J. Organomet. Chem. 1999, 585, 259Ϫ265.
J. Jazwinski, R. Kolinski, Tetrahedron Lett. 1981, 22,
1711Ϫ1714.
´
G. Herve, H. Bernard, L. Toupet, H. Handel, Eur. J. Org.
Compounds Obtained with Pyruvic Aldehyde
Chem. 2000, 33Ϫ35.
R. A. Kolinski, F. G. Ridell, Tetrahedron Lett. 1981, 22,
Compound 28: 13C NMR (CDCl3): δ ϭ 21.3 (CH3), 42.3, 46.8, 49.3,
50.2, 52.5, 57.5, 65.5, 67.9 (NCH2N) ppm. ESI-MS for C9H22N4
(MeOH): m/z ϭ 187.3 [M ϩ H]ϩ.
2217Ϫ2220.
F. Boschetti, F. Denat, E. Spinosa, R. Guilard, Chem. Com-
mun. 2002, 312Ϫ313.
J. J. Eisch, R. Sanchez, J. Org. Chem. 1986, 51, 1848Ϫ1852.
R. W. Alder, T. M. G. Carniero, R. W. Mowlam, A. G. Orpen,
P. A. Petillo, D. J. Vachon, G. R. Weisman, J. M. White, J.
Chem. Soc., Perkin Trans. 2 1999, 589Ϫ599.
M. Cherest, H. Felkin, N. Prudent, Tetrahedron Lett. 1968,
2199Ϫ2202.
M. Cherest, H. Felkin, Tetrahedron Lett. 1968, 2205Ϫ2209.
N. T. Anh, F. Maurel, J. M. Lefour, New. J. Chem. 1995, 19,
353Ϫ357.
[9]
Compound 29: 13C NMR (CDCl3): δ ϭ 19.5 (NCH2CH2CH2N),
25.4 (CH3), 40.1, 45.7, 48.2, 50.7, 53.0, 57.0, 60.8 (NCH2N) ppm.
ESI-MS for C10H24N4 (MeOH): m/z ϭ 201.2 [M ϩ H]ϩ.
[10]
[11]
Compound 30: 13C NMR (CDCl3): δ ϭ 21.0 (CH3) 29.1, 29.5
(NCH2CH2CH2N), 40.8 (2), 51.3 (2), 53.5, 55.0, 56.4 (2) (NCH2N)
ppm. ESI-MS for C11H26N4 (MeOH): m/z ϭ 215.3 [M ϩ H]ϩ.
[12]
[13]
[14]
[15]
[16]
Compounds Obtained with Butanedione
S. Bahmanyar, K. N. Houk, J. Am. Chem. Soc. 2001, 123,
11273Ϫ11283.
D. J. Cram, D. R. Wilson, J. Am. Chem. Soc. 1963, 85,
1245Ϫ1249.
Compound 31: 13C NMR (CDCl3): δ ϭ 23.0 (2) (CH3), 41.7, 47.0,
48.8 (2), 49.2, 49.4, 49.7, 52.4 (NCH2N) ppm. ESI-MS for
C10H24N4 (MeOH): m/z ϭ 201.4 [M ϩ H]ϩ.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
A. Robb, J. R. Cheesemen, V. G. Zakrzewski, J. A. Montgom-
ery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam,
A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, M. Mennucci, C. Pomelli, C.
Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala,
Q. Cui, K. Morokuma, D. K. Malik, A. D. Rabuk, K. Raghav-
achari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts,
R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, G. Gonzalez, M. Challacombe, P. M. W. Gill,
B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-
Gordon, E. S. Replogle, J. A. Pople, Gaussian 98 (Revision
A.1), Gaussian, Inc. Pittsburg PA, 1998.
Compound 32: 13C NMR (CDCl3): δ ϭ 24.5 (2) (CH3), 25.0 (2)
(NCH2CH2CH2N), 37.7, 41.8, 49.7, 52.6 (2), 53.5, 56.9, 58.1
(NCH2N) ppm. ESI-MS for C11H26N4 (MeOH): m/z ϭ 214.4 [M
ϩ H]ϩ.
Compound 33: 13C NMR (CDCl3):
δ ϭ 19.2 (CH3), 24.0
(NCH2CH2CH2N), 37.4, 49.2, 56.4, 57.6 (NCH2N) ppm. ESI-MS
for C12H28N4 (MeOH): m/z ϭ 229.4 [M ϩ H]ϩ.
Computational Methods
All structures were computed by using hybrid density functional
theory (B3LYP) and the 6Ϫ31G** basic set, as implemented in
Gaussian 98.[16] All gas-phase minima and transition states were
Received September 24, 2002
[O02529]
Eur. J. Org. Chem. 2003, 1050Ϫ1055
1055