G. Fontana et al. / Phytochemistry 50 (1999) 283±285
285
3.3. Triacetate 2
3.5. Acid hydrolysis of 1
Treatment of 1 (100 mg) with Ac2O±pyridine (1:1,
10 ml) at room temp. for 48 h yielded 2: mp 118±
Compound 1 (30 mg) was re¯uxed with 2 N HCl in
aqueous MeOH (50%, 30 ml). After 4 h the MeOH
was evaporated under reduced pressure, diluted with
H2O (15 ml) and the hydrolysate was then extracted
with EtOAc (3 Â 20 ml). The extract (12 mg) was trea-
ted with Ac2O±pyridine for 24 h at room temp. The
acetylated compound (5, 10 mg after crystallization
from MeOH) showed mp (127±1288C), [a]2D0 [ 48.98
1208C (from EtOH); [a]1D8 20.88 (CHCl3; c 0.721); IR
KBr
max
n
cm 1: 3080, 1645, 890 (terminal methylene), 1750
br (esters), 1240 (OAc), 2940, 2860, 1470, 1380, 1370,
1170, 1080, 1060, 1040, 910, 840, 800, 720, 690; 1H
NMR (400 MHz, CDCl3): see text; 13C NMR (100
MHz, CDCl3): for the sugar and fatty acid esters moi-
eties see text, aglycone: d 37.2 t (C-1), 29.5 t (C-2),
80.1 d (C-3), 39.0 t (C-4), 140.3 s (C-5), 122.1 d (C-6),
31.8 t (C-7), 31.9 d (C-8), 50.1 d (C-9), 36.7 s (C-10),
21.0 t (C-11), 39.7 t (C-12), 42.3 s (C-13), 56.7 d (C-
14), 24.3 t (C-15), 28.1 t (C-16), 56.0 d (C-17), 12.0 q
(C-18), 19.3 q (C-19), 36.7 d (C-20), 18.6 q (C-21),
35.5 t (C-22), 29.2 t (C-23), 49.5 d (C-24), 147.5 s (C-
25), 111.3 t (C-26), 17.8 q (C-27), 26.5 t (C-28), 11.8 q
(C-29).
1
(CHCl3; c 0.318)], H NMR and MS identical to those
reported previously (Rubinstein & Goad, 1974; Gaspar
et al., 1996; Sucrow et al., 1976) for the acetate of
(24S)-24-ethylcholesta-5,25-dien-3b-ol.
Comparison
[mp, 126±1288C, TLC on AgNO3 impregnated silica
gel plates, petrol±EtOAc (49:1) as eluent] with an auth-
entic sample con®rmed the identity.
Acknowledgements
3.4. Alkaline hydrolysis of 1
The authors thank Ms M.I. Jimenez, CSIC, Madrid,
for GC-MS analyses. This work was supported by
grants from the MURST (`Research Funds 60%',
Italy) and Direccion General de Ensenanza Superior
(PB94-0104 and PB96-0830, Spain).
To a solution of 1 (40 mg) in EtOH (2 ml) was
added a solution of KOH in EtOH (10%, w/v, 10 ml)
and the reaction mixture was left at room temp. for 3
days. After usual work-up, the acids and 3 were separ-
ately recovered. The acid fraction (15 mg) was dis-
solved in Et2O (5 ml) and treated with an excess of an
ethereal solution of CH2N2 for 2 h at room temp. The
solvent was evaporated and the residue subjected to
GC-MS analysis under standard conditions, by using a
Hewlett Packard 5890 gas chromatograph coupled to a
HP 5971A mass detector. The result of this analysis is
reported in Section 2.
References
Ahmad, V. U., Aliya, R., Perveen, S.,
Phytochemistry, 31, 1429.
& Shameel, M. (1992).
Bruno, M., de la Torre, M. C., Savona, G., Piozzi, F., & Rodrõguez, B.
(1990). Phytochemistry, 29, 2710.
Crude 3 (12 mg), without characterization, was trea-
ted with Ac2O±pyridine as usual yielding 4 [10 mg,
after CC on silica gel, petrol±EtOAc (3:1) as eluent]:
Bruno, M., Alcazar, R., de la Torre, M. C., Piozzi, F., Rodrõguez, B.,
Savona, G., Perales, A., & Arnold, N. A. (1992). Phytochemistry, 31,
3531.
Faghih, R., Fontaine, C., Horibe, I., Imamura, P. M., Lukacs, G.,
Olesker, A., & Seo, S. (1985). J. Org. Chem., 50, 4918.
Gaspar, H., Brito Palma, F. M. S., de la Torre, M. C., & Rodrõguez,
B. (1996). Phytochemistry, 43, 613.
mp 170±1728C (EtOH); [a]1D9 30.08 (CHCl3; c 0.311);
KBr
max
IR n
cm 1: 3080, 1640, 910 (terminal methylene),
1750, 1740, 1260, 1230 (OAc), 2950, 2870, 1450, 1380,
1
Kasai, R., Suzuo, M., Asakawa, J.-I.,
Tetrahedron Lett., 18, 175.
& Tanaka, O. (1977).
1370, 1160, 1105, 1070, 1060, 1040, 880, 800, 700; H
NMR (400 MHz, CDCl3): d 5.34, 1H, br d, J= 5.1
Hz (H-6), 5.19, 1H, t, J =9.4 Hz (H-30), 5.06, 1H, t,
J= 9.7 Hz (H-40), 4.94, 1H, dd, J =9.6, 8.0 Hz (H-
20), 4.71, 1H, sext, J= 2.5, 1.3 Hz (HB-26), 4.62, 1H,
dq, J =2.5, 0.7 Hz (HA-26), 4.58, 1H, d, J= 8.0 Hz
(H-10), 4.24, 1H, dd, J =12.2, 4.9 Hz (HB-60), 4.10,
1H, dd, J= 12.2, 2.5 Hz (HA-60), 3.66, 1H, ddd,
J= 9.7, 4.9, 2.5 Hz (H-50), 3.47 m (H-3a), 2.06, 2.03,
2.00 and 1.99, 3H each, s (4 Â OAc), 1.55, 3H, dd,
J= 2.5, 0.7 Hz (Me-27), 0.97, 3H, s (Me-19), 0.89, 3H,
d, J= 6.4 Hz (Me-21), 0.79, 3H, t, J= 7.5 Hz (Me-
29), 0.65, 3H, s (Me-18); positive FAB-MS: [MH] + at
m/z 743. (Found: C, 69.47; H, 8.83%. C43H66O10
requires: C, 69.51; H, 8.95%).
Razdan, T. K., Kachroo, P. K., Qurishi, M. A., Kalla, A. K., &
Waight, E. S. (1996). Phytochemistry, 41, 1437.
Rubinstein, I., & Goad, L. J. (1974). Phytochemistry, 13, 481.
Savona, G., Passannanti, S., Paternostro, M. P., Piozzi, F., Hanson,
J. R., & Siverns, M. (1978a). Phytochemistry, 17, 320.
Savona, G., Passannanti, S., Paternostro, M. P., Piozzi, F., Hanson,
J. R., Hitchcock, P. B., & Siverns, M. (1978b). J. Chem. Soc.
Perkin Trans. I, 356.
Sucrow, W., Slopianka, M., & Kircher, H. W. (1976). Phytochemistry,
15, 1533.
Teixeira, A. P., Batista, O., Simoes, M. F., Nascimento, J., Duarte, A.,
de la Torre, M. C., & Rodrõguez, B. (1997). Phytochemistry, 44, 325.
Tori, K., Seo, S., Yoshimura, Y., Arita, H., & Tomita, Y. (1977).
Tetrahedron Lett., 18, 179.
Wright, J. L. C., McInes, A. G., Shimizu, S., Smith, D. G., Walter,
J. A., Idler, D., & Khalil, W. (1978). Can. J. Chem., 56, 1898.