6942 Ren et al.
Asian J. Chem.
UV-visible spectra: The UV-visible absorption spectra
Conclusion
of Salamo-type bisoxime compounds H2L1-H2L4 (Table-3) in
diluted dichloromethane solution show that the spectra of
Salamo-type bisoxime compounds H2L1-H2L4 are similar to
each other. Salamo-type bisoxime compounds H2L1-H2L4
exhibit two intense peaks at around 273 and 318 nm. The
former absorption peaks at about 273 nm can be assigned to
the π-π* transition of the benzene rings, while the latter absor-
ption peaks at about 318 nm can be attributed to the intra-
ligand π-π* transition of the C=N bonds15. It is of note that
there was no absorption around 400 nm, which are seen in the
corresponding Salen derivatives. The absorption is ascribed
to the quinoid form of H2 salen16.
In this work, a series of methoxy-substituted Salamo-type
bisoxime compounds H2L1-H2L4 that have two oxime bonds
instead of imine bonds have been designed and synthesized
by the reaction of 2 equivalents of 3-methoxy-2-hydroxybenzal-
dehyde with 1,3-bis(aminooxy)propane, 1,4-bis(aminooxy)-
butane, 1,5-bis(aminooxy)pentane and 1,6-bis(aminooxy)-
hexane under hot ethanolic medium, respectively. It is shown
that a bisoxime moiety is much more useful to assemble
supramolecular systems than a Schiff base moiety. Further
investigation on the synthesis and structures of methoxy-
substituted Salamo-type complexes with transition metal ions,
are now in progress.
ACKNOWLEDGEMENTS
TABLE-3
UV-VISIBLE SPECTRAL DATA FOR THE
SALAMO-TYPE BISOXIME COMPOUNDS H2L1-H2L4
This work was supported by the Fundamental Research
Funds for the Gansu Province Universities (212086) and the
science and technology support funds of Lanzhou Jiaotong
University (ZC2012003), which are gratefully acknowledged.
First band
Second band
C (×10-5 mol L-1)
Comp.
λmax1 (nm)
273
λmax2 (nm)
318
H2L1
H2L2
H2L3
H2L4
5.00
5.00
5.00
5.00
REFERENCES
275
318
279
322
1. E.N. Jacobsen, Acc. Chem. Res., 33, 421 (2000).
2. D.J. Zhou, Q. Li, C.H. Huang, G.Q. Yao, U. Shigeo, M. Masakazu,
L.M. Ying, A.C. Yu and X.S. Zhao, Polyhedron, 16, 1381 (1997).
3. T.K. Ronson, H. Adams and M.D. Ward, Inorg. Chim. Acta, 358, 1943
(2005).
282
325
1
1H NMR spectra: The H NMR spectra of the title
compounds H2L1-H2L4 in DMSO-d6 are shown in Table-4.
The 1H NMR spectra showed a singlet at about 8.22-8.28 ppm
indicating the existence of oxime bonds16.
4. N.S. Venkataramanan, G. Kuppuraj and S. Rajagopal, Coord. Chem.
Rev., 249, 1249 (2005).
5. M. Sasaki, K. Manseki, H. Horiuchi, M. Kumagai, M. Sakamoto, H.
Sakiyama, Y. Nishida, M. Sakai, Y. Sadaoka, M. Ohba and H. Okawa,
J. Chem. Soc., Dalton Trans., 259 (2000).
TABLE-4
1H NMR DATA FOR SALAMO-TYPE BISOXIMES H2L1-H2L4
6. S.S. Sun, C.L. Stern, S.T. Nguyen and J.T. Hupp, J. Am. Chem. Soc.,
126, 6314 (2004).
1H NMR (400 MHz, DMSO-d6, δ/ppm )
7. J.C.G. Bünzli and C. Piguet, Chem. Rev., 102, 1897 (2002).
8. S. Akine, T. Taniguchi and T. Nabeshima, Chem. Lett., 30, 682 (2001).
9. W.K. Dong, J.Y. Shi, J.K. Zhong, Y.Q. Tian and J.G. Duan, Chinese J.
Inorg. Chem., 24, 10 (2008).
Comp.
2.43-2.54 (m, 2H, CH2), 3.89 (s, 6H, CH3), 4.47 (s, 4H,
CH2-O), 6.80 (dd, J = 7.9, 2.0 Hz, 2H, PhH), 6.85 (t, J =
H2L1
7.7 Hz, 2H, PhH), 6.90 (dd, J = 7.8, 1.6 Hz, 2H, PhH),
8.22 (s, 2H, N=CH), 9.70 (s, 2H, OH)
10. P.G. Lacroix, Eur. J. Inorg. Chem., 339 (2001).
11. S.Akine, W.K. Dong and T. Nabeshima, Inorg. Chem., 45, 4677 (2006).
12. S. Akine, Y. Morita, F. Utsuno and T. Nabeshima, Inorg. Chem., 48,
10670 (2009).
2.44-2.54 (m, 4H, CH2), 3.90 (s, 6H, CH3), 4.48 (s, 4H,
CH2-O), 6.81 (dd, J = 7.6, 1.6 Hz, 2H, PhH), 6.86 (t, J =
H2L2
7.8 Hz, 2H, PhH), 6.91 (dd, J = 7.6, 2.0 Hz, 2H, PhH),
8.26 (s, 2H, N=CH), 9.71 (s, 2H, OH)
13. (a) W.K. Dong, J.G. Duan, Y.H. Guan, J.Y. Shi and C.Y. Zhao, Inorg.
Chim. Acta, 362, 1129 (2009); (b) W.K. Dong, X.N. He, H.B. Yan,
Z.W. Lv, X. Chen, C.Y. Zhao and X.L. Tang, Polyhedron, 28, 1419
(2009); (c) W.K. Dong, L. Li, C.F. Li, L. Xu and J.G. Duan, Spectrochim.
Acta A, 71, 650 (2008); (d) W.K. Dong, Y.X. Sun, C.Y. Zhao, X.Y.
Dong and L. Xu, Polyhedron, 29, 2087 (2010).
2.45-2.55 (m, 6H, CH2), 3.90 (s, 6H, CH3), 4.47 (s, 4H,
CH2-O), 6.80 (dd, J = 7.6, 1.7 Hz, 2H, PhH), 6.86 (t, J =
H2L3
8.2 Hz, 2H, PhH), 6.92 (dd, J = 7.7, 1.7 Hz, 2H, PhH),
8.25 (s, 2H, N=CH), 9.72 (s, 2H, OH)
2.45-2.56 (m, 8H, CH2), 3.91 (s, 6H, CH3), 4.50 (s, 4H,
CH2-O), 6.80 (dd, J = 7.6, 1.8 Hz, 2H, PhH), 6.85 (t, J =
H2L4
14. J.A. Faniran, K.S. Patel and J.C. Bailar Jr., J. Inorg. Nucl. Chem., 36,
1547 (1974).
8.0 Hz, 2H, PhH), 6.90 (dd, J = 7.6, 1.8 Hz, 2H, PhH),
8.28 (s, 2H, N=CH), 9.76 (s, 2H, OH)
15. T. Ghosh, B. Mondal, T. Ghosh, M. Sutradhar, G. Mukherjee and M.
Drew, Inorg. Chim. Acta, 360, 1753 (2007).
16. H.E. Smith, Chem. Rev., 83, 359 (1983).