Angewandte Chemie International Edition
10.1002/anie.202000556
RESEARCH ARTICLE
Zhang, K. S. Schellhammer, P. Machata, F. Ortmann, G. Cuniberti, Y.
Fu, J. Hunger, R. Tang, A. A. Popov, B. Berger, K. Müllen, X. Feng, J.
Am. Chem. Soc. 2016, 138, 11606−11615. e) S. Tsuchiya, H. Saito, K.
Nogi, H. Yorimitsu, Org. Lett. 2019, 21, 3855−3860.
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (21674023, 51722301, 51903052,
and 21733003), Shanghai Pujiang Project (19PJ1400700), and
National Key R&D Program of China (2018YFA0209401).
[
10] Y. L. Rao, H. Amarne, L. D. Chen, M. L. Brown, N. J. Mosey, S. Wang,
J. Am. Chem. Soc. 2013, 135, 3407−3410.
[11] a) C. Zhu, A. J. Kalin, L. Fang, Acc. Chem. Res. 2019, 52, 1089−1100;
b) G. Zhou, M. Baumgarten, K. Müllen, J. Am. Chem. Soc. 2007, 129,
1
2211–12221. c) P. M. Burrezo, X. Zhu, S.-F. Zhu, Q. Yan, J. T. L.
Navarrete, H. Tsuji, E. Nakamura, J. Casado, J. Am. Chem. Soc. 2015
37, 3834–3843.
Keywords: aromaticity • azaborine • heterocycle • oligomer •
polycyclic aromatic hydrocarbon
1
[
12] A. W. Baggett, F. Guo, B. Li, S.-Y. Liu, F. Jäkle, Angew. Chem. Int. Ed.
2015, 54, 11191–11195; Angew. Chem. 2015, 127, 11343–11347.
[1]
a) C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913–915;
b) M. C. Gather, A. Köhnen, K. Meerholz, Adv. Mater. 2011, 23, 233–
[13] a) G. Zhou, M. Baumgarten, K. Müllen, J. Am. Chem. Soc. 2008, 130,
12477-12484; b) X. Lu, S. Fan, J. Wu, X. Jia, Z.-S. Wang, G. Zhou, J.
Org. Chem. 2014, 79, 6480−6489.
2
38; c) A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A. B.
Holmes, Chem. Rev. 2009, 109, 897–1091; d) J. Huang, J.-H. Su, H.
Tian, J. Mater. Chem. 2012, 22, 10977–10989; e) T. Hatakeyama, K.
Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y.
Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777–2781.
[14] a) A. M. Genaev, S. M. Nagy, G. E. Salnikov, V. G. Shubin, Chem.
Commun. 2000, 1587–1588; b) Y. Chen, W. Chen, Y. Qiao, G. Zhou,
Chem. Eur. J. 2019, 25, 9326–9338; c) T. S. D. Vries, A. Prokofjevs, J.
N. Harvey, E. Vedejs, J. Am. Chem. Soc. 2009, 131, 14679–14687.
[15] A. S. Guram, S. L. Buchwald, J. Am. Chem. Soc. 1994, 116, 7901–
7902.
[2]
a) M. Bendikov, F. Wudl, D. F. Perepichka, Chem. Rev. 2004, 104,
4891–4946; b) J. Wu, W. Pisula, K. Müllen, Chem. Rev. 2007, 107,
718–747; c) Y. Wang, Z. Yan, H. Guo, M. A. Uddin, S. Ling, X. Zhou,
H. Su, J. Dai, H. Y. Woo, X. Guo, Angew. Chem. Int. Ed. 2017, 56,
5304–15308; Angew. Chem. 2017, 129, 15506–15510; d) M. Chu, J.-
[16] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483.
[17] X. Wang, F. Zhang, J. Liu, R. Tang, Y. Fu, D. Wu, Q. Xu, X. Zhuang,
G. He, X. Feng, Org. Lett. 2013, 15, 5714–5717.
1
X. Fan, S. Yang, D. Liu, C. F. Ng, H. Dong, A.-M. Ren, Q. Miao, Adv.
Mater. 2018, 30, 1803467; e) Z. Jin, Z.-F. Yao, K. P. Barker, J. Pei, Y,
Xia, Angew. Chem. Int. Ed. 2019, 58, 2034-2039; Angew. Chem. 2019,
[18] A. J. Ashe III, Organometallics 2009, 28, 4236-4248.
[19] E. R. Abbey, L. N. Zakharov, S.-Y. Liu, J. Am. Chem. Soc. 2008, 130,
7250–7252.
131, 2056–2061.
[
3]
a) C. Li, M. Liu, N. G. Pschirer, M. Baumgarten, K. Müllen, Chem. Rev.
[20] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. R. Schleyer,
Chem. Rev. 2005, 105, 3842–3888.
2010, 110, 6817–6855; b) Li, G.; Zhu, R.; Yang, Y. Nat. Photonics
2012, 6, 153–161; c) H. Fu, Z. Wang, Y. Sun, Angew. Chem. Int. Ed.
2019, 58, 4442-4453; Angew. Chem. 2019, 131, 4488–4499; d) Z. Yao,
[21] J. Lee, H. Li, A. J. Kalin, T. Yuan, C. Wang, T. Olson, H. Li, L. Fang,
Angew. Chem. Int. Ed. 2017, 56, 13727–13731; Angew. Chem. 2017,
129, 13915–13919.
X. Liao, K. Gao, F. Lin, X. Xu, X. Shi, L. Zuo, F. Liu, Y. Chen, A. K.-Y.
Jen, J. Am. Chem. Soc. 2018, 140, 2054–2057.
[22] M. Kastler, J. Schmidt, W. Pisula, D. Sebastiani, K. Müllen, J. Am.
Chem. Soc. 2006, 128, 9526–9534.
[
[
4]
5]
a) M. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117,
3
479–3716; b) Q. Miao, Adv. Mater. 2014, 26, 5541–5549; c) X.-Y.
Wang, X. Yao, A. Narita, K. Müllen, Acc. Chem. Res. 2019, 52, 2491–
505.
a) K. Matsuo, S. Saito, S. Yamaguchi, J. Am. Chem. Soc. 2014, 136,
2580−12583; b) J. M. Farrell, C. Mützel, D. Bialas, M. Rudolf, K.
Menekse, A.-M. Krause, M. Stolte, F. Würthner, J. Am. Chem. Soc.
019, 141, 9096−9104; c) H. Yokoi, Y. Hiraoka, S. Hiroto, D.
[23] a) F. Jäkle, Chem. Rev. 2010, 110, 3985–4022. b) T. W. Hudnall, C.-
W. Chiu, F. P. Gabbaï, Acc. Chem. Res. 2009, 42, 388–397.
[24] J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. B-ssler, M.
Porsch, J. Daub, Adv. Mater. 1995, 7, 551–554.
2
1
[25] H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R.
Puchta, P. v. R. Schleyer, Org. Lett. 2006, 8, 863–866.
2
[26] H. Kalam, A. Kerim, K. Najmidin, P. Abdurishit, T. Tawar, Chem. Phys.
Lett. 2014, 592, 320–325.
Sakamaki, S. Seki, H. Shinokubo, Nat. Commun. 2015, 6, 8215.
a) Z. Liu, T. B. Marder, Angew. Chem. Int. Ed. 2008, 47, 242–244;
Angew. Chem. 2008, 120, 248–250; b) M. J. D. Bosdet, W. E. Piers,
Can. J. Chem. 2009, 87, 8–29.
[
6]
7]
[27] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J.
C.Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B.
Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H.
Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,R. Cammi, C.
Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski,S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox,T. Keith, Al M. A. Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong,C. Gonzalez, J. A. Pople. Gaussian 03, revision
C.02.Gaussian, Inc., Wallingford, CT 2004.
[
a) T. Hatakeyama, S. Hashimoto, S. Seki, M. Nakamura, J. Am. Chem.
Soc. 2011, 133, 18614–18617; b) X.-Y. Wang, A. Narita, X. Feng, K.
Müllen, J. Am. Chem. Soc. 2015, 137, 7668–7671; c) X.-Y. Wang, F.-
D. Zhuang, R.-B. Wang, X.-C. Wang, X.-Y. Cao, J.-Y. Wang, J. Pei, J.
Am. Chem. Soc. 2014, 136, 3764–3767.
[8]
a) C. R. McConnell, S.-Y. Liu, Chem. Soc. Rev. 2019, 48, 3436–3453;
b) F.-D. Zhuang, Z.-H. Sun, Z.-F. Yao, Q.-R. Chen, Z. Huang, J.-H.
Yang, J.-Y. Wang, J. Pei, Angew. Chem. Int. Ed. 2019, 58, 10708–
10712; Angew. Chem. 2019, 131, 10818–10822; c) H. Huang, Y. Zhou,
M. Wang, J. Zhang, X. Cao, S. Wang, D. Cao, C. Cui, Angew. Chem.
Int. Ed. 2019, 58, 10132–10137; Angew. Chem. 2019, 131, 10238–
10243; d) S. Nakatsuka, N. Yasuda, T. Hatakeyama, J. Am. Chem.
Soc. 2018, 140, 13562−13565; e) X. Long, D. Li, B. Wang, Z. Jiang, W.
Xu, B. Wang, D. Yang, Y. Xia, Angew. Chem. Int. Ed. 2019, 58,
1
1369–11373; Angew. Chem. 2019, 131, 11491–11495; f) Y. Min, C.
Dou, H. Tian, Y. Geng, J. Liu, L. Wang, Angew. Chem. Int. Ed. 2018,
7, 2000–2004; Angew. Chem. 2018, 130, 2018–2022; g) Y. Min, C.
Dou, D. Liu, H. Dong, J. Liu, J. Am. Chem. Soc. 2019, 141,
7015−17021.
[28] a) P. Chen, A. S. Marshall, S.-H. Chi, X. Yin, J. W. Perry, F. Jäkle,
Chem. Eur. J. 2015, 21, 18237–18247; b) L. Ji, S. Griesbeck, T. B.
Marder, Chem. Sci. 2017, 8, 846–863.
5
[29] G. Li, Y. Chen, Y. Qiao, Y. Lu, G. Zhou, J. Org. Chem. 2018, 83, 5577
–5587.
1
[
9]
a) Z. X. Giustra, S.-Y. Liu, J. Am. Chem. Soc. 2018, 140, 1184–1194;
b) X.-Y. Wang, J.-Y. Wang, J. Pei, Chem. Eur. J. 2015, 21, 3528–
3539; c) K. Matsui, S. Oda, K. Yoshiura, K. Nakajima, N. Yasuda, T.
Hatakeyama, J. Am. Chem. Soc. 2018, 140, 1195-1198; d) X. Wang, F.
8
This article is protected by copyright. All rights reserved.