M.W. Chojnacka et al. / Journal of Molecular Structure 991 (2011) 158–161
161
material (Rf = 0.61) was collected and re-crystallised from CHCl3/
Acknowledgements
hexanes (bp 35–60 °C range) to yield approximately 80 mg of pure
1 in the form of pale yellow needles. These needles were deemed to
be suitable for X-ray diffraction methods.
The authors are indebted to the support of Ryerson University
(Dean’s Special Research Fund), The University of Toronto and
nserc (Canada) in the form of a Discovery Grant (RAG) and a NSERC
USRA (MWC). Prof. Derick Rousseau (Ryerson University) is
thanked for his helpful discussions and input.
Yield: 10%; mp: 153–156 °C.
IR (KBr: cmꢂ1): 3128 (s, br), 2923 (m), 2853 (m), 1768 (m), 1707
(m), 1605 (m), 1503 (m), 1489 (m), 1444 (m), 1400 (vs), 1254 (m),
1192 (w), 1136 (w), 1114 (w), 1095 (m), 1029 (m), 909 (m), 812
(w), 767 (w), 744 (w), 714 (w), 621 (w).
References
1H NMR (400 MHz) dH/ppm: 7.76 (dd, 1H, J = 8.3, 1.8, ArH), 7.54
(dd, 1H, J = 1.7, 0.3, ArH), 6.90 (d, 1H, J = 8.4, ArH), 6.10 (s, 2H, CH2).
13C{1H} NMR (75 MHz) dC/ppm: 161.3, 153.4, 148.6, 127.1, 122.7,
110.1, 108.4, 102.2.
[1] R.C. Larock, Comprehensive Organic Transformations: A Guide to Functional
Group Preparations, 2nd ed., Wiley–VCH, Weinheim, 1999. Sections 2.58, 3.5,
5.3, 8.27 and 9.13-9.16.
[2] R. Sustmann, in: B.M. Trost, I. Fleming (Eds.), Comprehensive Organic
Synthesis: Selectivity, Strategy and Efficiency in Modern Organic Chemistry,
vol. 6, Elsevier, Amsterdam, 1991. Section 2.1.
[3] G.D. Yadav, S.S. Naik, Org. Proc. Res. Develop. 4 (2000) 141.
[4] P.-W. Tseng, S.-W. Yeh, C.-H. Chou, J. Org. Chem. 73 (2008) 3481.
[5] A.J. Carmichael, M.J. Earle, J.D. Holbrey, P.B. McCormac, K.R. Seddon, Org. Lett. 1
(1999) 997.
[6] A. Orita, C. Tanahashi, A. Kakuda, J. Otera, J. Org. Chem. 66 (2001) 8926.
[7] C.-T. Chen, J.-H. Kuo, V.D. Pawar, Y.S. Munot, S.-S. Weng, C.-H. Ku, C.-Y. Liu, J.
Org. Chem. 70 (2005) 1188.
[8] P. Goodrich, C. Hardacre, H. Mehdi, P. Nancarrow, D.W. Rooney, J.M. Thompson,
Ind. Eng. Chem. Res. 45 (2006) 6640.
[9] H. Mitsuhashi, H. Miyazaki, Y. Kawamura, H. Nakamura, K. Arata, Chem. Mater.
13 (2001) 3038.
[10] C. Hardacre, P. Nancarrow, D.W. Rooney, J.M. Thompson, Org. Proc. Res.
Develop. 12 (2008) 1156.
[11] C.J. Wilson, S.S. Husain, E.R. Stimson, L.J. Dangott, K.W. Miller, J.E. Maggio,
Biochemistry 36 (1997) 4542.
[12] R.A. Gossage, in: H.W. Roesky, D.K. Kennepohl (Eds.), Experiments in Green
and Sustainable Chemistry, Wiley–VCH, Weinheim, 2009, pp. 19–24. Chapter
4.
[13] C. Kanta De, E.G. Klauber, D. Seidel, J. Am. Chem. Soc. 131 (2009) 17060.
[14] For example E.N. Duesler, R.B. Kress, C.-T. Lin, W.-I. Shiau, I.C. Paul, D.Y. Curtin,
J. Am. Chem. Soc. 103 (1981) 875.
4.3. Single crystal X-ray structure determination of 1
X-ray diffraction data were recorded on a Nonius Kappa CCD
diffractometer using Mo K
a radiation (k = 0.71073 Å) and the
resulting data collection obtained using Collect [31]. All estimated
standard deviations (esds), except the esd in the dihedral angle be-
tween two l.s. planes, are estimated using the full covariance ma-
trix. The cell esds are taken into account individually in the
estimation of esds in distances, angles and torsion angles; correla-
tions between esds in cell parameters are only used when they are
defined by crystal symmetry. An approximate (isotropic) treat-
ment of cell esds is used for estimating esds involving l.s. planes.
The cell refinement and data reduction was performed with Den-
zo–smn [32]. The structure solution employed sir-92 [33] and
the structure refinement was carried out with shelxtl 6.1 [34].
The molecular graphics were obtained using platon [35] and the
publication materials were generated utilising shelxtl 6.1 [34].
The refinement of F2 is against ALL reflections. The weighted R-fac-
tor wR and GoFs are based on F2, conventional R-factors R are based
on F, with F set to zero for negative F2. The threshold expression of
[15] K. Kishikawa, S. Furusawa, T. Yamaki, S. Kohmoto, M. Yamamoto, K.
Yamaguchi, J. Am. Chem. Soc. 124 (2002) 1597.
[16] G. van Alen, J. Kraube, Z. Chem. 4 (1964) 193.
[17] C.S. McCammon, J. Trotter, Acta Cryst. 17 (1964) 1333.
[18] M. Calleri, G. Ferrais, D. Viterbo, Atti Accad. Sci. Torino 100 (1966) 145.
[19] G. Huelgas, L. Quintero, C. Anaya de Parrodi, S. Bernès, Acta Cryst. E62 (2006)
o3191.
F2 > 2 (F2) is used only for calculating R-factors (gt), etc. and is not
r
relevant to the choice of reflections for refinement. R-factors based
on F2 are statistically about twice as large as those based on F, and
R-factors based on ALL data will be even larger.
[20] S.R. Bryn, P.Y. Siew, J. Pharma. Sci. 70 (1981) 280.
[21] M.L. Głowka, I. Iwanicka, I. Król, J. Crystallogr. Spec. Res. 20 (1990) 519.
[22] J.K. Maurin, Polish J. Chem. 68 (1994) 1795.
[23] A.J. Blake, R.S. Grimditch, M. Schröder, Acta Cryst. C51 (1995) 1472.
[24] D.E. Lynch, R. Hayer, S. Bagga, S. Parsons, Aust. J. Chem. 53 (2000) 593.
[25] G.-F. Liu, Y.-W. Luo, D.-B. Qin, Acta. Cryst. E65 (2009) o1043.
[26] (a) Gh. Ciurdaru, M. Ciuciu, J. Prakt. Chem. 321 (1979) 320;
(b) Y. Tohda, T. Kawashima, M. Ariga, R. Akiyama, H. Shudoh, Y. Mori, Bull.
Chem. Soc. Jpn. 57 (1984) 2329;
(c) A. Zhou, C.U. Pittman Jr., Tetrahedron Lett. 45 (2004) 8899;
(d) A. Zhou, C.U. Pittman Jr., Tetrahedron Lett. 46 (2005) 2045;
(e) G. Ye, S. Chatterjee, M. Li, A. Zhou, Y. Song, B. Lloyd Barker, C. Chen, D.J.
Beard, W.P. Henry, C.U. Pittman, Tetrahedron 66 (2010) 2919.
[27] (a) Y. Tohda, T. Yanagidani, S. Hiramatsu, N. Nishiwaki, K. Tani, M. Ariga, Bull.
Chem. Soc. Jpn. 70 (1997) 2781;
4.4. Molecular calculations of 1
The gas phase molecular calculations of BA and 1 were carried
out using the Spartan 8.0 (Wavefunction Inc., Irvine CA, 2008) suite
of software programs.
(b) A. Zhou, C.U. Pittman Jr., Synthesis (2006) 37.
Supplementary material
[28] Details on the optimization of Equation 1 (Figure 2) for the azole 2,4,4-
trimethyl-2-oxazoline and R =–C6H3(O2CH2)-3,4 will be reported separately;
M.W. Chojnacka, A.J. Lough, R.A. Gossage et al., unpublished observations.
[29] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[30] F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, G. Orpen, R. Taylor, J. Chem.
Soc., Perkin Trans. 2 (1987) S1.
[31] ‘‘Collect’’: Data Collection Software. Nonius B.V., Delft, The Netherlands, 1997–
2002.
[32] Z. Otwinowski, W. Minor, Meth. Enzymol. 276 (1997) 307.
[33] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori,
M. Camalli, J. Appl. Cryst. 27 (1994) 435.
Crystallographic data (excluding structure factors) have been
deposited in the Cambridge Crystallographic Data Centre as Sup-
plementary publication No. ccdc 776757. Copies of these data
can be obtained free of charge on application to ccdc, 12 Union
Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336 033; e-mail: de-
posit@ccdc.cam.ac.uk). Supplementary data associated with this
article (i.e., .cif file of 1 and files, in .mol2 format, containing the
structures of BA and 1 derived from the DFT treatment of these
materials) can be found, in the online version, at doi:10.1016/
j.molstruc.xxxx.xx.xxx or requested directly from the authors.
[34] G.M. Sheldrick, Acta Cryst. A64 (2008) 112.
[35] A.L. Spek, Acta Cryst. D65 (2009) 148.