and Discussion). Solid-state 13C and 29Si CP MAS experiments
were carried out using Bruker MSL-300 and MSL 400 spectro-
meters (13C, 75.46; 29Si, 59.62 and 79.50 MHz) equipped with
Bruker probes including external lock (4 and 7 mm probes).
Zirconia rotors were used. Solid samples were spun at 0.5–4
kHz. Fluctuations in MAS speed were smaller than ±2 Hz over
several hours. The magic angle was carefully set using the 79Br
resonance of KBr. The matching condition for the Hartmann–
Hahn cross-polarization (1H 90Њ pulse length: 5 µs for the 4 mm
probe and 6.5 µs for the 7 mm probe) was set on adamantane
(13C) and compound 1 (29Si). It should be noted that both radio-
frequency channel levels have to be very carefully set. Indeed, it
has been demonstrated that under mismatched conditions the
results of IRCP sequences may be false.48 In order to check
the matching of the Hartmann–Hahn condition, the IRCP
seqence was tested on a glycine sample which acts as a typical
‘rigid’ methylene CH2 group (see Results and Discussion). The
test was done periodically during all 13C IRCP MAS experi-
ments. Contact times (tCP) were optimized by standard variable-
contact-time experiments. Relaxation delays were 6–15 s. The
13C and 29Si shielding-tensor analyses,39 as well as deconvolu-
tion of lines, were obtained by using the WINFIT program
developed by Massiot et al.40
References
1 M. G. Voronkov and V. I. LavrentЈyev, Top. Curr. Chem., 1982, 102,
199.
2 F. J. Feher and T. A. Budzichowski, Polyhedron, 1995, 22,
3239.
3 R. H. Baney, M. Itoh, A. Sakakibara and T. Suzuki, Chem. Rev.,
1995, 95, 1409.
4 D. A. Loy and K. J. Shea, Chem. Rev., 1995, 95, 1431.
5 C. L. Frye and W. T. Collins, J. Am. Chem. Soc., 1970, 92, 5586.
6 P. A. Agaskar and W. G. Klemperer, Inorg. Chim. Acta, 1995, 229,
355 and refs. therein.
7 F. J. Feher, T. A. Budzichowski and K. J. Weller, J. Am. Chem. Soc.,
1989, 111, 7288.
8 F. J. Feher and K. J. Weller, Organometallics, 1990, 9, 2638.
9 K. Larsson, Ark. Kemi, 1960, 16, 203, 209, 215.
10 I. A. Baidina, N. V. Podberezskaya, V. I. Alekseev, T. N. Martynova,
S. V. Borisov and A. N. Kanev, Zh. Strukt. Khim., 1979, 20, 648;
N. V. Podberezskaya, S. A. Magarill, I. A. Baidina, S. V. Borisov,
L. E. Gorsh, A. N. Kanev and T. N. Martynova, J. Struct. Chem.
(Engl. Transl.), 1982, 23, 422.
11 G. Koellner and U. Müller, Acta Crystallogr., Sect. C, 1989, 45,
1106.
12 F. J. Feher and T. A. Budzichowski, J. Organomet. Chem., 1989, 373,
153.
13 H. B. Bürgi, K. W. Törnroos, G. Calzaferri and H. Bürgy, Inorg.
Chem., 1993, 32, 4914.
14 G. Calzaferri, R. Imhof and K. W. Törnroos, J. Chem. Soc., Dalton
Trans., 1994, 3123.
15 K. W. Törnroos, H. B. Bürgi, G. Calzaferri and H. Bürgy, Acta
Crystallogr., Sect. B, 1995, 51, 155.
Crystallography
Crystals of compound 1 were prepared as described above,
16 K. W. Törnroos, G. Calzaferri and R. Imhof, Acta Crystallogr., Sect.
C, 1995, 51, 1732.
sealed in Lindemann capillaries and studied at 293 K.
17 K. W. Törnroos, Acta Crystallogr., Sect. C, 1994, 50, 1646.
18 M. Bärtsch, P. Bornhauser, G. Calzaferri and R. Imhof, J. Phys.
Chem., 1994, 98, 2817.
19 B. J. Hendan and H. C. Marsmann, J. Organomet. Chem., 1994, 483,
33.
20 J. Kowalewski, T. Nilsson and K. W. Törnroos, J. Chem. Soc.,
Dalton Trans., 1996, 1597.
21 E. Lippmaa, M. A. Alla, T. J. Pehk and G. Engelhardt, J. Am. Chem.
Soc., 1978, 100, 1929.
22 G. Engelhardt, D. Zeigan, D. Hoebbel, A. Samoson and E. Lippmaa,
Z. Chem., 1982, 22, 314.
23 J. D. Lichtenhan, Y. A. Otonari and M. J. Carr, Macromolecules,
1995, 28, 8435.
24 S. E. Yuchs and K. A. Carrado, Inorg. Chem., 1996, 35, 261.
25 A. Sellinger and R. M. Laine, Macromolecules, 1996, 29, 2327.
26 T. N. Martynova and V. P. Korchkov, J. Organomet. Chem., 1983,
248, 241.
Crystal data. C16H24O12Si8, M = 633.04, trigonal, space group
¯
R3 (no. 148), a = 13.533(2), c = 14.222(2) Å, γ = 120Њ,
U = 1012(5) Å3 (by least-squares refinement for 25 reflections in
the range 13.9 < θ < 14.5Њ, λ = 0.710 69 Å), Z = 3, Dc = 1.398 g
cmϪ3, F(000) = 984. Colourless parallelepipeds. Crystal dimen-
sions 0.4 × 0.3 × 0.3 mm, µ(Mo-Kα) = 0.4 mmϪ1
.
Data collection. Enraf-Nonius CAD-4 diffractometer, ω–2θ
mode with ω scan width = 0.80 ϩ 0.34 tan θ, ω-scan speed 2–
20.1 minϪ1, graphite-monochromated Mo-Kα radiation, 999
reflections measured (1 р θ р 25Њ; h 0–13, k 0–13; lϪ16 to 16),
882 independent, giving 332 with I у 3σ(I) (merging R =
0.0166). Two standard reflections were used (intervals: 100
reflections and 60 min). Variation of standards: 1%.
27 T. N. Martynova and T. I. Chupakhina, J. Organomet. Chem., 1988,
345, 11.
28 A. Pines, M. G. Gibby and J. S. Waugh, J. Chem. Phys., 1973, 59,
569.
29 A. E. Derome, Modern NMR Techniques for Chemistry Research,
Pergamon, Oxford, 1991, p. 129.
30 C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and
Chemistry of Sol-Gel Processing, Academic Press, San Diego,
1990.
31 W. R. Schmidt, L. V. Interrante, R. H. Doremus, T. K. Trout,
P. S. Marchetti and G. E. Maciel, Chem. Mater., 1991, 3, 257.
32 C. A. Fyfe and J. Niu, Macromolecules, 1995, 28, 3894.
33 C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National
Laboratory, Oak Ridge, TN, 1965.
34 G. Socrates, Infrared Characteristic Group Frequencies, Wiley,
Chichester, 1994, p. 42.
35 D. Hoebbel, I. Pitsch, D. Heidemann, H. Jancke and W. Hiller,
Z. Anorg. Allg. Chem., 1990, 583, 133.
36 I. Pitsch, D. Hoebbel, H. Jancke and W. Hiller, Z. Anorg. Allg.
Chem., 1991, 596, 63.
37 A. R. Grimmer, R. Peter, E. Fechner and G. Molgedey, Chem. Phys.
Lett., 1981, 77, 331.
38 R. K. Harris, T. N. Pritchard and E. G. Smith, J. Chem. Soc.,
Faraday Trans. 1, 1989, 85, 1853.
39 J. Herzfeld and A. E. Berger, J. Chem. Phys., 1980, 73, 6021.
40 D. Massiot, H. Thiele and A. Germanus, Bruker Rep., 1994, 140, 43.
41 N. J. Clayden, C. M. Dobson, L. Y. Lian and D. J. Smith, J. Magn.
Reson., 1986, 69, 476.
Structure solution and refinement. Direct methods (Si, O, C),
full-matrix least-square refinements with anisotropic thermal
parameters in the last cycles for all non-H atoms and hydrogens
in calculated positions (assuming sp2 C atoms). Occupancies of
C(11), C(21)–C(24) positions were also refined. As µ(Mo-Kα)
was rather low, no absorption correction was applied. Sixty-
eight refined parameters. Extinction correction method:59 sec-
ondary extinction 36(9). The weighting scheme was w = 1. Final
R and RЈ values were 0.0503 and 0.0480; (∆/σ)max = 0.15. A final
Fourier-difference calculation showed residual electron density
in the range Ϫ0.2 to ϩ0.15 e ÅϪ3. The SHELXS 8660 system of
computer programs was used for the direct methods. Refine-
ment was performed with the CRYSTALS program.61 Atomic
scattering factors, corrected for anomalous dispersion, were
obtained from ref. 62.
Atomic coordinates, thermal parameters, and bond lengths
and angles have been deposited at the Cambridge Crystallo-
graphic Data Centre (CCDC). See Instructions for Authors,
J. Chem. Soc., Dalton Trans., 1997, Issue 1. Any request to the
CCDC for this material should quote the full literature citation
and the reference number 186/438.
Acknowledgements
42 E. M. Menger, D. P. Raleigh and R. G. Griffin, J. Magn. Reson.,
1985, 63, 579.
43 T. M. Duncan, A Compilation of Chemical Shift Anisotropies, The
Farragut Press, Chicago, 1990, p. C-13.
We thank Professor P. Boch for his support and Professor
R. M. Laine for providing different octameric silasesquioxanes.
S. Mace is also gratefully acknowledged for experimental help.
J. Chem. Soc., Dalton Trans., 1997, Pages 1617–1626
1625