4
Tetrahedron Letters
[12] C.B. Yue, D. Fang, L. Liu, T.F. Yi, J. Mol. Liquid., 163 (2011)
4
5
Chloroacetophenone
Chloroanisole
99
16
99-121.
[13] B.C. Ranu, S. Banerjee, J. Org. Chem., 70 (2005) 4517-4519.
[14] B.C. Ranu, S. Banerjee, Org. Lett., 7 (2005) 3049-3052.
[15] R. Wang, J.C. Xiao, B. Twamley, J.M. Shreeve, Org. Biomol.
Chem., 5 (2007) 671-678.
Reagents and conditions: aryl halide (0.25 mmol), phenylboronic acid (0.275
mmol), K2CO3 (1.0 mmol), [PdCl2(6b)] (0.5 mol%), 100 C, 18 h, degassed
solvent (2 mL), anisole as an internal standard. Conversion determined by GC.
Due to these promising results, imidazolium-based ILs were
used as media for the Suzuki coupling reaction. In these tests, the
system from entry 6 (Table 3) was employed under biphasic
conditions (toluene/IL). Among the ILs tested, the best conversion
was achieved using BMI·BF4, but it was less active when
compared to the homogeneous reaction conducted in toluene
(compare Tables 3 and 5). Unfortunately, attempts to recycle the
biphasic catalytic system failed, since the conversion dropped in
the second run (Entry 1, Table 5).
[16] J.C. Xiao, J.M. Shreeve, J. Org. Chem., 70 (2005) 3072-3078.
[17] M.R. dos Santos, J.R. Diniz, A.M. Arouca, A.F. Gomes, F.C.
Gozzo, S.M. Tamborim, A.L. Parize, P.A.Z. Suarez, B.A.D. Neto,
ChemSusChem, 5 (2012) 716-726.
[18] C.S. Consorti, G.L.P. Aydos, G. Ebeling, J. Dupont, Org. Lett.,
10 (2008) 237-240.
[19] C.S. Consorti, G.L.P. Aydos, G. Ebeling, Organometallics, 28
(2009) 4527-4533.
[20] X.D. Feng, B. Pugin, E. Kuesters, G. Sedelmeier, H.U. Blaser,
Adv. Synth. Catal., 349 (2007) 1803-1807.
Table 5. Suzuki coupling reaction between 4-bromotoluene and phenylboronic
acid promoted by [PdCl2(6b)] under biphasic conditions
[21] Y.W. Zhao, H.M. Huang, J.P. Shao, C.G. Xia, Tetrahedron:
Asymmetry, 22 (2011) 769-774.
[22] J. Limberger, B.C. Leal, A.L. Monteiro, J. Dupont, Chem. Sci., 6
(2015) 77-94.
[23] J.D. Scholten, B.C. Leal, J. Dupont, ACS Catal., 2 (2012) 184-
200.
[24] A.E. Visser, R.P. Swatloski, W.M. Reichert, R. Mayton, S. Sheff,
A. Wierzbicki, J.H. Davis, R.D. Rogers, Environ. Sci. Technol., 36
(2002) 2523-2529.
[25] A.A.J. Torriero, A.I. Siriwardana, A.M. Bond, I.M. Burgar, N.F.
Dunlop, G.B. Deacon, D.R. MacFarlane, J. Phys. Chem. B, 113 (2009)
11222-11231.
[26] X. He, T.H. Chan, Tetrahedron, 62 (2006) 3389-3394.
[27] C. Fliedel, P. Braunstein, J. Organomet. Chem., 751 (2014) 286-
300.
[28] A. Bhadani, S. Singh, Langmuir, 27 (2011) 14033-14044.
[29] M. Zanatta, A.L. Girard, G. Marin, G. Ebeling, F.P. dos Santos,
C. Valsecchi, H. Stassen, P.R. Livotto, W. Lewis, J. Dupont, Phys.
Chem. Chem. Phys., 18 (2016) 18297-18304.
[30] H. Shirota, T. Mandai, H. Fukazawa, T. Kato, J. Chem. Eng. Data,
56 (2011) 2453-2459.
[31] B.M. Choudary, C. Sridhar, M.L. Kantam, G.T. Venkanna, B.
Sreedhar, J. Am. Chem. Soc., 127 (2005) 9948-9949.
[32] E.R. Strieter, D.G. Blackmond, S.L. Buchwald, J. Am. Chem.
Soc., 127 (2005) 4120-4121.
[33] A. Shafir, P.A. Lichtor, S.L. Buchwald, J. Am. Chem. Soc., 129
(2007) 3490-3491.
[34] J.W. Tye, Z. Weng, A.M. Johns, C.D. Incarvito, J.F. Hartwig, J.
Am. Chem. Soc., 130 (2008) 9971-9983.
Entry
Ionic liquid
BMI·BF4
BMI·NTf2
BMI·PF6
Conv. (%)a
1) 88; 2) 0
1) 58; 2) 41; 3) 18
1) 34; 2) 32; 3) 29
1
2
3
Reagents and conditions: bromotoluene (0.25 mmol), phenylboronic acid
(0.275 mmol), K2CO3 (1.0 mmol), [PdCl2(6b)] (0.5 mol%), toluene (1.0 mL),
IL (0.5 mL), 100 C, 18 h, degassed solvent, anisole as an internal standard;
aConversion determined by GC after each run.
In summary, we have described a practical, useful and odorless
synthesis of mono and dicationic sulfur-containing imidazolium-
based ILs. Our strategy based on a key isothiouronium salt
intermediate allowed the generation of ten new ILs with yields
ranging from 52% to 99%, which represents an excellent
alternative to the protocols already described in literature for the
synthesis of thiaalkylimidazolium ILs. Moreover, these
compounds were applied as ligands and ionic tags for the detection
of reaction intermediates in Ullmann and Suzuki coupling
reactions, opening new possibilities to apply these ILs in several
catalytic transformations. A more comprehensive scope evaluation
as well as the application of these ILs in other metal-catalyzed
reactions are underway in our groups and it will be published in
due course.
[35] S.L. Zhang, Y.Q. Ding, Organometallics, 30 (2011) 633-641.
[36] G. Franc, Q. Cacciuttolo, G. Lefevre, C. Adamo, I. Ciofini, A.
Jutand, ChemCatChem, 3 (2011) 305-309.
[37] J.W. Tye, Z.Q. Weng, R. Giri, J.F. Hartwig, Angew. Chem. Int.
Ed., 49 (2010) 2185-2189.
Bibliography
[38] J. Limberger, B.C. Leal, D.F. Back, J. Dupont, A.L. Monteiro,
Adv. Synth. Catal., 354 (2012) 1429-1436.
[39] A. Kumar, G.K. Rao, S. Kumar, A.K. Singh, Dalton Trans., 42
(2013) 5200-5223.
[1] J.P. Hallett, T. Welton, Chem. Rev., 111 (2011) 3508-3576.
[2] J. Dupont, R.F. de Souza, P.A.Z. Suarez, Chem. Rev., 102 (2002)
3667-3691.
[3] J. Dupont, J.D. Scholten, Chem. Soc. Rev., 39 (2010) 1780-1804.
[4] J.D. Scholten, Curr. Org. Chem., 17 (2013) 348-363.
[5] P. Migowski, J. Dupont, Chem. Eur. J., 13 (2007) 32-39.
[6] M.H.G. Prechtl, J.D. Scholten, J. Dupont, Molecules, 15 (2010)
3441-3461.
[7] M.C. Corvo, J. Sardinha, T. Casimiro, G. Marin, M. Seferin, S.
Einloft, S.C. Menezes, J. Dupont, E.J. Cabrita, ChemSusChem, 8
(2015) 1935-1946.
[8] G.B. Appetecchi, A. D'Annibale, C. Santilli, E. Genova, L.
Lombardo, M.A. Navarra, S. Panero, Electrochem. Commun., 63
(2016) 26-29.
Acknowledgments
We thank the CNPq (449758/2014-1), FAPERGS (16/2551-
0000373-4 and PRONEX-FAPERGS), VRAC-PUC-Rio (J.L.)
and INCT-Catálise for financial support. This study was financed
in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001. We also
thank the CAPES (G.I.M.) and the CNPq (A.P.; R.G.M.C.) for
scholarships.
[9] T. Welton, Coord. Chem. Rev., 248 (2004) 2459-2477.
[10] S.G. Lee, Chem. Commun., (2006) 1049-1063.
[11] R. Giernoth, Angew. Chem. Int. Ed., 49 (2010) 2834-2839.