COMPLEX INTERMEDIATES IN THE NO INSERTION REACTIONS INTO LITHIUM AMIDES
751
yield. Crystallization from ethanol–water rendered white
crystals, m.p. 104.5–105.58C. The N-nitrosoisopropylcy-
clohexylamine was obtained in a similar way. Both
nitrosamines were fully characterized by mass spectrom-
110 (11.4), 98 (23.2), 83 (36.6), 69 (28.3), 56 (42.9), 55
(75.88).
1
etry, H- and 13C-NMR spectroscopy.
REFFERENCES
1. Feelisch M, Stamler JS. In Methods in Nitric Oxide Research,
Feelisch M, Stamler JS (eds). Wiley: Chichester, 1996; ch. 7.
2. Mehler AH. Nitric oxide from arginine: a biological surprise. In
The chemistry of amino, nitroso, nitro and related groups Part 2,
Patai S. (ed.). Wiley: Chichester, 1996 and references cited therein.
3. Lakshmi VM, Hsu FF, Zenser TW. Chem. Res. Toxicol. 2005; 18:
1038.
4. Yu Y, Ostresch JM, Houghten RA. J. Org. Chem. 2003; 68: 183,
and refs. therein.
5. For recent highlights see the following special issue: Chem Rev.
2002; 102(4): cited in ref. 3.
6. Gdaniec M, Milewska MJ, Polonski T. J. Org. Chem. 1995; 60:
7411.
7. Fishbein JC, Chahoua L, Mesic M, Revis CL, Vigroux A. J. Org.
Chem. 1997; 62: 2500.
8. Nudelman NS, Bonatti A. Synlett 2000; 1825.
9. Nicolau KC, Yue EW, Oshima T. New roads to molecular complex-
ity. In The New Chemistry, Hall N (ed.). Cambridge University
Press: Cambridge, UK, 2000; 178.
10. Waldmann H. Domino reaction. In Organic Synthesis Highlight I,
Waldmann H (ed.). VCH: Weinheim, 1995; 193.
11. Tietze LF. Chem. Rev. 1996; 6: 115.
Preparation of hydrazones
For the preparation of N-i-propylcyclohexyl-hydrazo-
butanone, the methodology described for the preparation
of lithium amides was used but using 15 mL of Bu Li
(0.8 M in hexane) instead of 5 mL. The rest of the
procedure is similar, as well as the reaction of the
resulting lithium i-propylcyclohexylamide with NO.
The reaction mixture was worked up as described above.
The N-i-propylcyclohexyl-hydrazo-butanone was iso-
lated as an orange oil by preparative TLC (using
hexane-ethyl acetate 3:2 as eluent). The same compound
was independently obtained by treating the isolated the
N-i-propylcyclohexylnitrosamine with Bu Li.
Similarly, the 4-(N-dicylohexyl)hydrazine-octane was
obtained in a 70% yield by using 25 mL instead of 5 mL,
for the preparation of the N-dicylohexyl lithium amide.
Optimization of the reaction conditions, isolation and full
characterization of these compounds is under progress.
N-dicyclohexylnitrosamine, 3a. Melting point: 104.5–
´
12. (a) Nudelman NS, Garcıa GV. Tandem reactions using organo-
lithiums. A review. Int. Org. Prep. Proc. 2003; 35: 445–500.
(b) Vazquez A, Goldberg R, Nudelman NS. Organolithiums as
useful synthetic intermediates for tandem reactions. In The Chem-
istry of Functional Groups: Lithium Chemistry, Patai S, Rappaport
Z (eds). Wiley: 2005, ch. 2; 63–137.
13. Collum DB. Acc. Chem. Res. 1993; 26: 227, and references cited
therein.
14. Clegg W, Liddle S, Mulvey R, Robertson A. Chem. Commun.
1999; 511–513.
15. (a) Collum DB, Lucht BL. J. Am. Chem. Soc. 1996; 118: 3529; (b)
Collum DB, Lucht BL. J. Am. Chem. Soc. 1994; 116: 6009.
16. Hilmersson G. Chem. Eur. J. 2000; 6: 3069.
1
105.58C. H-NMR (CDCl3) (ppm): 1.60 (m, 20H), 3.73
(m, 1H), 4.84 (m, 1H). 13C-NMR (CDCl3) (ppm): 26.36,
26.41, 26.66, 26.90, 30.16, 35.42, 54.61, 60.10. MS m/e
(rel. int.): 210 (6.96), 129 (7.28), 98 (12.83), 83 (100.00),
67 (12.72), 55 (61.74), 41 (42.17).
N-cyclohexy-i-propylnitrosamine, 3b. 1H-NMR (CDCl3)
(ppm): 1.16 (d), 1.51 (d), 1.6 (m), 3.75 (m, 2H), 4.23 (m,
1H), 4.80 (m, 1H), 5.05 (m, 2H). 13C-NMR (CDCl3)
(ppm): 19.05, 23.77, 25.18, 25.32, 25.48, 25.97, 29.20,
34.10, 44.72, 50.85, 52.70, 58.47.
N-cyclohexy-i-propyl-butylhydrazone, 4b. 1H-NMR
(CDCl3) (ppm): 0.94 (t, 3H), 1.07 (d, 6H), 1.47 (m,
12 H), 2.20 (m, 2H); 3.07 (m, 1H), 3.58 (m, 1H), 6.88
(t, 1H). 13C-NMR (CDCl3) (ppm): 13.80, 20.29, 20.80,
26.11, 30.86, 31.02, 35.20, 47.70, 56.89, 141.01. MS m/e
(rel.int.): 211 (38.21), 196 (60.85), 168 (83.96), 126
(56.13), 114.00 (100.00), 99 (11.91), 86 (16.16), 84
(20.40), 71 (26.06), 56 (68.40), 42 (70.75).
17. (a) Schulz H, Nudelman N, Viruela-Martin P, Viruela-Martin
R, Tomas-Vert F. J. Chem. Soc. Perkin Trans. 2 2000, 1619.
(b) Viruela-Martin P, Viruela-Martin R, Tomas-Vert F, Nudelman
N. J. Am. Chem. Soc. 1994; 116: 10110.
´
18. Fressigne C, Maddaluno J, Marquez A, Giessner-Prettre C. J. Org.
Chem. 2000; 65: 8899.
19. (a) Nudelman NS, Marder M, Gurevich A. J. Chem. Soc. Perkin
Trans. 2 1993; 229; (b) Adler M, Marsch M, Nudelman NS, Boche
G. Angewandte Chemie 1999; 38: 1261.
20. Nudelman NS, Lewkowicz ES, Perez DG. Synthesis 1990; 10: 917.
21. Enders D, Nu¨bling C, Schubert H. Liebigs Ann/Recueil 1997;
1089.
22. Shriver DF, Drezdzon MA. The Manipulation of Air-Sensitive
Compounds (2nd edn). Wiley: New York, 1986.
23. Nudelman NS, Garcia G, Schulz H. J. Org. Chem. 1998; 58: 5843,
and refs. therein.
24. Blanchard AA. Inorganic Syntheses vol. 2, Fernelius WC (ed.). Mc
Graw Hill Book Company, Inc.; New York, 1946; 126–128.
25. Nudelman NS, Schulz H, Garcia Linares G, Bonatti A, Boche G.
Organometallics 1998; 17: 146.
N-dicyclohexyl-butylhydrazone, 4a. MS m/e (rel. int.):
250 (33.3), 207 (80.16), 167 (12.0), 138 (22.9), 125 (100),
Copyright # 2006 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2006; 19: 748–751