C.G.L. Nongpiur et al.
Inorganica Chimica Acta 525 (2021) 120459
(s, 1H), 10.02 (s, 1H), 9.86 (d, J = 8 Hz, 1H), 7.77 (d, J = 8 Hz, 1H), 7.69
(d, J = 8 Hz, 1H), 7.62 (d, J = 8 Hz, 1H), 6.87 (d, J = 8 Hz, 1H), 6.78 (d,
J = 12 Hz, 1H), 6.00 (d, J = 4 Hz, 1H), 5.88 (d, J = 8 Hz, 1H), 5.81 (d, J
= 4 Hz, 1H), 5.74 (t, J = 8 Hz, 2H), 5.64 (d, J = 4 Hz, 1H), 2.74 (sept, J =
8 Hz, 1H), 2.15 (s, 1H), 2.09 (s, 3H), 1.25 (d, J = 8 Hz, 2H), 1.21 (d, J =
4 Hz, 2H), 1.18 (d, J = 8 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ 159.50,
155.56, 154.09, 147.74, 134.65, 131.06, 130.47, 129.71, 125.22,
118.49, 116.93, 115.01, 30.78, 22.26, 21.98, 19.17; UV–Vis {Acetoni-
Hz, 1H), 7.38 (s, 1H), 7.25 (t, J = 8 Hz, 1H), 6.95 (d, J = 8 Hz, 1H), 5.56
(d, J = 4 Hz, 1H), 5.32 (d, J = 4 Hz, 1H), 5.20 (d, J = 4 Hz, 1H), 4.09 (d,
J = 4 Hz, 1H), 3.86 (s, 3H), 2.85 (s, 3H), 2.53 (sept, J = 8 Hz 1H), 1.92 (s,
3H), 1.05 (d, J = 8 Hz, 2H), 1.11 (d, J = 8 Hz, 2H); UV–Vis {Acetonitrile,
λmax nm (
ε
, 104 Mꢀ 1 cmꢀ 1)}: 253 (3.755), 321 (2.670), 365 (2.619));
ESI-MS (m/z): 657.3 [M + 1]+, 621.3 [Mꢀ Cl]+.
2.5.8. [Cp*Rh(κ2(N∩O)L3)Cl] (8)
–
trile, λmax nm (
ε
,104 Mꢀ 1 cmꢀ 1)}: 266 (2.495), 361 (1.352), 441 (1.235).
Yield : 85%; Color: Orange; IR (KBr, cmꢀ 1): 1721 ν(C O), 1630
–
1
–
–
–
–
ν(C O), 1590 ν(C N), 1489–1454 ν(C C), 1138 ν(C O); H NMR (400 MHz,
–
–
–
2.5.2. [Cp*Rh(κ2(N∩O)L1)Cl] (2)
CDCl3 + DMSO‑d6, ppm) δ 10.05 (s, 1H), 8.89 (d, J = 8 Hz, 1H), 8.21 (d,
J = 4 Hz, 1H), 8.02 (d, J = 12 Hz, 2H), 7.81 (t, J = 8 Hz, 1H), 7.74 (d, J =
4 Hz, 1H), 7.68 (s, 1H), 7.64 (d, J = 4 Hz, 1H), 7.59 (d, J = 8 Hz, 1H),
7.29 (t, J = 8 Hz, 1H), 6.99 (d, J = 8 Hz, 1H), 3.85 (s, 3H), 2.75 (s, 3H),
Yield : 90%; Color: Orange; IR (KBr, cmꢀ 1): 3445 ν(OH), 1723 ν(C
,
–
O)
–
1
–
–
1608 ν(C O), 1569 ν(C N); H NMR (400 MHz, CDCl3 + DMSO‑d6, ppm) δ
–
–
8.51 (s, 2H), 7.64 (m, (d, J = 4 Hz, 5H), 7.35 (d, J = 12 Hz, 2H), 7.32 (d,
J = 12 Hz, 1H), 2.73 (s, 3H), 1.58 (s, 15H); 13C NMR (100 MHz, CDCl3): δ
147.73, 144.24, 134.65, 131.04, 130.66, 130.46, 128.94, 125.22,
118.48, 116.93, 116.83, 115.12, 30.78, 27.33, 9.59, 9.24, 9.09; UV–Vis
1.37 (s, 15H); UV–Vis {Acetonitrile, λmax nm (
ε
,104 Mꢀ 1 cmꢀ 1)}: 252
(4.317), 375 (3.023); ESI-MS (m/z): 659.3 [M + 1]+, 623.3 [Mꢀ Cl]+.
2.5.9. [Cp*Ir(κ2(N∩O)L3)Cl] (9)
{Acetonitrile, λmax nm (
ε
,104 Mꢀ 1 cmꢀ 1)}: 260 (3.646), 330 (2.848), 432
Yield : 75%; Color: Yellow; IR (KBr, cmꢀ 1): 1720 ν(C O), 1629
–
(1.434).
–
1H NMR (400
–
–
–
–
;
O)
ν(C O), 1590 ν(C N), 1489–1454 ν(C
C),
–
1138 ν(C
–
–
2.5.3. [Cp*Ir(κ2(N∩O)L1)Cl] (3)
MHz, CDCl3 + DMSO‑d6, ppm) δ 9.91 (s, 1H), 8.69 (d, J = 8 Hz, 1H),
8.29 (d, J = 12 Hz, 1H), 8.25 (d, J = 4 Hz, 1H), 8.09 (d, J = 8 Hz, 1H),
7.82 (t, J = 8 Hz, 1H), 7.72 (d, J = 8 Hz, 1H), 7.66 (t, J = 8 Hz, 2H), 7.34
(t, J = 8 Hz, 1H), 7.05 (d, J = 8 Hz, 1H), 3.84 (s, 3H), 2.86 (s, 3H), 1.31
Yield : 87%; Color: Yellow; IR (KBr, cmꢀ 1): 3440 ν(OH), 1718 ν(C
,
–
O)
–
1
–
–
1608 ν(C O), 1564 ν(C N); H NMR (400 MHz, CDCl3 + DMSO‑d6, ppm) δ
–
–
10.12 (s, 1H), 9.56 (d, J = 16 Hz, 1H), 9.27 (d, J = 8 Hz, 1H), 7.83 (d, J
= 8 Hz, 2H), 7.71 (d, J = 8 Hz, 1H), 7.56 (d, J = 8 Hz, 1H), 6.83 (m, J =
8 Hz, 3H), 2.59 (s, 3H), 1.74 (s, 15H); 13C NMR (100 MHz, CDCl3): δ
147.74, 134.65, 131.30, 130.66, 130.47, 125.23, 124.76,118.49,
116.93, 115.12, 100.21, 86.06, 85.81, 30.78, 9.30, 9.11, 8.36; UV–Vis
(s, 15H); UV–Vis {Acetonitrile, λmax nm (
ε
, 104 Mꢀ 1 cmꢀ 1)}: 214
(9.864), 304 (3.197), 366 (3.161); ESI-MS (m/z): 749.4 [M + 1]+, 713.4
[Mꢀ Cl]+.
{Acetonitrile, λmax nm (
ε
, 104 Mꢀ 1 cmꢀ 1)}: 275 (3.454), 312 (2.917),
2.6. Structure determination by single-crystal X-ray analyses
445 (1.304).
The solvent diffusion method was used for growing single crystals.
Suitable single crystals for X-ray analysis have been obtained for 1, 7, 8
and 9 in a dichloromethane-hexane mixture. Single crystal data for the
complexes were collected with an Oxford Diffraction Xcalibur Eos
2.5.4. [(p-cymene)Ru(κ2(N∩O)L2)Cl] (4)
Yield : 85%; Color: Orange; IR (KBr, cmꢀ 1): 1723 ν(C O), 1663 ν(C
,
O)
–
–
–
–
1
–
1570–1617 ν(C N); H NMR (400 MHz, CDCl3, ppm) δ 8.52 (s, 1H), 7.48
–
(d, J = 8 Hz, 2H), 7.20 (s, 1H), 6.70 (d, J = 8 Hz, 2H), 6.55 (s, 2H), 5.72
(d, J = 4 Hz, 2H), 5.64 (d, J = 4 Hz, 2H), 3.97 (s, 3H), 3.54 (q, J = 8 Hz,
4H), 3.12 (sept, J = 8 Hz, 1H), 2.76 (s, 6H), 2.32 (t, J = 12 Hz, 6H), 1.38
(d, J = 4 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 173.11, 161.03, 159.76,
158.91, 153.19, 148.03, 132.07, 129.98, 127.54, 121.10, 120.71,
116.27, 112.99, 110.03, 108.32, 102.01, 96.74, 84.30, 81.83, 79.93,
55.90, 45.30, 31.17, 30.72, 23.05, 22.35, 18.56, 12.60; UV–Vis
Gemini diffractometer using graphite monochromated Mo-Kα radiation
(λ = 0.71073 Å). The strategy for data collection was evaluated using the
CrysAlisPro CCD software [21]. Crystal data were collected by standard
“phi–omega scan” techniques and were scaled and reduced using Cry-
sAlisPro RED software. The structures were solved by direct methods
using SHELXS-97 and refined by full-matrix least-squares with SHELXL-
97, refining on F2 [22,23]. The positions of all atoms were obtained by
direct methods. Metal atoms in the complex were located from the E-
maps and all non-hydrogen atoms were refined anisotropically by full-
matrix least squares. Hydrogens were placed in geometrically ideal-
–
{Acetonitrile, λmax nm (
ε
,104 Mꢀ 1 cmꢀ 1)}: 256 (2.652), 428 (5.726).
2.5.5. [Cp*Rh(κ2(N∩O)L2)Cl] (5)
Yield : 90%; Color: Orange; IR (KBr, cmꢀ 1): 1718 ν(C O), 1660 ν(C
–
–
,
O)
–
ized positions and constrained to ride on their parent atoms with C
H
–
1
–
1570 ν(C N); H NMR (400 MHz, CDCl3, ppm) δ 8.43 (s, 1H), 7.48 (s,
distances of 0.95–1.00 Angstrom. Isotropic thermal parameters Ueq were
fixed such that they were 1.2Ueq of their parent atom; Ueq for C.H.’s are
1.5Ueq of their parent atom Ueq in case of methyl groups. Crystallo-
graphic and structure refinement parameters for the complexes are
summarized in Table 1 and selected bond lengths and angles are pre-
sented in Table 2. Fig. 1 was drawn with the ORTEP3 program [24].
–
1H), 7.44 (d, J = 4 Hz, 1H), 7.42 (s, 1H), 7.35 (t, J = 8 Hz, 1H), 7.12 (d, J
= 8 Hz, 1H), 6.64 (d, J = 12 Hz, 1H), 6.47 (s, 1H), 3.85 (s, 3H), 3.45 (q, J
= 8 Hz, 4H), 2.66 (s, 3H), 1.76 (s, 15H), 1.23 (t, J = 8 Hz, 6H); UV–Vis
{Acetonitrile, λmax nm (
ε
, 104 Mꢀ 1 cmꢀ 1)}: 248 (3.292), 421 (4.546);
ESI-MS (m/z): 644.59 [Mꢀ Cl]+, 541.1 [Mꢀ Rhꢀ HCl]+.
2.5.6. [Cp*Ir(κ2(N∩O)L2)Cl] (6)
3. Results and discussions
Yield : 82%; Color: Yellow; IR (KBr, cmꢀ 1): 1723 ν(C O), 1663 ν(C
–
–
,
O)
–
–
1
–
1565 ν(C N); H NMR (400 MHz, CDCl3, ppm) δ 8.44 (s, 1H), 7.41 (s,
3.1. Synthesis of metal complexes
–
1H), 7.39 (s, 1H), 7.05 (d, J = 8 Hz, 1H), 6.63 (d, J = 4 Hz, 1H), 6.60 (d,
J = 4 Hz, 1H), 6.47 (d, J = 4 Hz, 2H), 3.87 (s, 3H), 3.43 (q, J = 12 Hz,
4H), 2.68 (s, 3H), 1.63 (s, 15H), 1.22 (t, J = 12 Hz, 6H); UV–Vis
Treatment of d6 halide-bridged metal dimers [(p-cymene)RuCl2]2
and [Cp*MCl2]2 (M = Rh and Ir) with the coumarin hydrazone ligands in
1:2 ratio resulted in the formation of neutral mononuclear bidentate
chelated complexes 1–9. Earlier reports [25] have shown that ruthe-
nium complexes of hydrazone derivatives exhibited N∩O coordination
mode as neutral complexes by deprotonation of NH proton using a base
such as Et3N. But in our case, ruthenium complexes exhibited N∩O
bonding mode even without the usage of a base, as is seen in other
complexes of hydrazone derivatives [26]. The same is observed for
rhodium and iridium complexes. All these complexes were obtained in
{Acetonitrile, λmax nm (
ε
,104 Mꢀ 1 cmꢀ 1)}:247 (2.641), 420 (4.476).
2.5.7. [(p-cymene)Ru(κ2(N∩O)L3)Cl] (7)
Yield : 80%; Color: Yellow; IR (KBr, cmꢀ 1): 1711 ν(C O), 1634
–
–
ν(C O), 1615–1545 ν(C N), 1489–1454 ν(C
C),
–
1138 ν(C
1H NMR
–
;
O)
–
–
–
–
–
(400 MHz, CDCl3 + DMSO‑d6, ppm) δ 9.82 (s, 1H), 8.71 (d, J = 8 Hz,
1H), 8.14 (d, J = 8 Hz, 1H), 7.98 (d, J = 8 Hz, 1H), 7.83 (t, J = 8 Hz, 1H),
7.76 (d, J = 8 Hz, 1H), 7.71 (s, 1H), 7.64 (t, J = 8 Hz, 1H), 7.58 (d, J = 8
4