Naturally Selenium-Rich Lentils
J. Agric. Food Chem., Vol. 55, No. 18, 2007 7341
(31) Wang, N.; Daun, K. J. Effects of variety and crude protein content
on nutrient and anti-nutrients in lentils (Lens culinaris). Food
Chem. 2006, 95, 493-502.
(32) Doyle, P. S.; Fletche, W. K. Influence of soil parent material on
the selenium content of wheat from west central Saskatchewan.
Can. J. Plant Sci. 1977, 3, 859-864.
(33) Institute of Medicine, Food and Nutrition Board. Dietary
Reference Intakes: Vitamin C, Vitamin E, Selenium, and
Carotenoids; National Academy Press: Washington, DC, 2000.
(34) McDonald, M. B. In Physiology and Determination of Crop
Yield; Boote, K. L., Bennett, J. M., Sinclair, T. R., Paulsen, G.
M., Eds.; American Society of Agronomy: Madison, WI, 1995;
pp 37-60.
(35) Lyons, G.; Stangoulis, J.; Graham, R. High-selenium wheat:
biofortification for better health. Nutr. Res. ReV. 2003, 16, 45-
60.
(14) Chen, Y.; Hall, M.; Graziano, J. H.; Slavkovich, V.; van Geen,
A.; Parvez, F.; Ahsan, H. A prospective study of blood selenium
levels and the risk of arsenic-related premalignant skin lesions.
Cancer Epidemiol. Biomarkers PreV. 2007, 16, 207-213.
(15) Ullrey, D. E.; Brown, W. L. Selenium in nutrition, revised edition;
National Academy Press: Washington, DC, 1983.
(16) Vandenberg, A.; Banniza, S.; Warkentin, T. D.; Ife, S.; Barlow,
B.; McHale, S.; Brolley, B.; Gan, Y.; McDonald, C.; Bandara,
M.; Dueck, S. CDC Redberry lentil. Can. J. Plant Sci. 2006,
86, 497-498.
(17) Vandenberg, A.; Kiehn, F. A.; Vera, C.; Gaudiel, R.; Buchwaldt,
L.; Dueck, S.; Wahab, J.; Slinkard, A. E. CDC Robin lentil. Can.
J. Plant Sci. 2002, 82, 111-112.
(18) Cramer, S. P.; Tench, O.; Yocum, M.; George, G. N. A 13-
element Ge detector for fluorescence EXAFS. Nucl. Instrum.
Methods Phys. Res., A 1988, 266, 586-591.
(36) Srikumar, T. S. The mineral and trace element composition of
vegetables, pulses and cereals of southern India. Food Chem.
1993, 46, 163-167.
(19) Hope, H. The crystal structure of trimethylselenonium iodide,
(CH3)3SeI. Acta Crystallogr. 1966, 20, 610-613.
(20) Pickering, I. J.; Brown, G. E., Jr.; Tokunaga, T. K. Quantitative
speciation of selenium in soils using X-ray absorption spectros-
copy. EnViron. Sci. Technol. 1995, 29, 2456-2459.
(21) Lintschinger, J.; Fuchs, N.; Moser, J.; Kuennelt, D.; Goessler,
W. Selenium-enriched sprouts. A raw material for fortified
cereal-based diets. J. Agric. Food Chem. 2000, 48, 5362-5368.
(22) SAS Institute Inc. SAS user’s guide: statistics 2005, version 9;
Cary, NC, 2005.
(23) Pickering, I. J.; George, N. G.; Fleet-Stalder, V. V.; Chasteen,
T. G.; Prince, R. C. X-ray absorption spectroscopy of selenium-
containing amino acids. J. Biol. Inorg. Chem. 1999, 4, 791-
794.
(24) Buchanan, B. B.; Bucher, J. J.; Carlson, D. E.; Edelstein, N.
M.; Hudson, E. A.; Kaltsoyannis, N.; Leighton, T.; Lukens, W.;
Shuh, D. K.; Nitsche, H.; Reich, T.; Roberts, K.; Torretto, P.;
Woicik, J.; Yang, W.-S.; Yee, A.; Yeela, B. C. A XANES and
EXAFS investigation of the speciation of selenite following
bacterial metabolization. Inorg. Chem. 1995, 34 (6), 1617-1619.
(25) Van Fleet-Stalder, V.; Chasteen, T. G.; Pickering, I. J.; George,
G. N.; Prince, R. C. Fate of selenate and selenite metabolized
by Rhodobacter sphaeroides. Appl. EnViron. Microbiol. 2000,
66 (11), 4849-4853.
(26) de Souza, M. P.; Pilon-Smits, E. A. H.; Lytle, C. M.; Hwang,
S.; Tai, J.; Honma, T. S. U.; Yeh, L.; Terry, N. Rate-limiting
steps in selenium assimilation and volatilization by Indian
Mustard. Plant Physiol. 1998, 117, 1487-1494.
(27) Pickering, I. J.; Prince, R. C.; Salt, D. E.; George, G. N.
Quantitative chemically-specific imaging of selenium transfor-
mation in plants. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 10717-
10722.
(28) Freeman, J. L.; Zhang, L. H.; Marcus, M. A.; Fakra, S.; McGrath,
S. P.; Pilon-Smits, E. A. H. Spatial imaging, speciation, and
quantification of selenium in the Hyperaccumulator Plants
Astragalus bisulcatus and Stanleya pinnata. Plant Physiol. 2006,
142, 124-134.
(29) Vickerman, D. B.; Trumble, J. T.; George, G. N.; Pickering, I.
J.; Nichol, H. Selenium biotransformations in an insect ecosys-
tem: effects of insects on phytoremediation. EnViron. Sci.
Technol. 2004, 38, 3581-3586.
(30) Dumont, E.; Vanhaecke, F.; Cornelis, R. Selenium speciation
from food source to metabolites: a critical review. Anal. Bioanal.
Chem. 2006, 385, 1304-1323.
(37) USDA National Nutrient Database for Standard Reference,
release 18; USDA: Washington, DC, 2006.
(38) Kadrabova, J.; Madaric, A.; Ginter, E. The selection content of
selected food from Slovak Republic. Food Chem. 1997, 58, 29-
32.
(39) Kellen, E.; Zeegers, M.; Buntinx, F. Selenium is inversely
associated with bladder cancer risk: A report from the Belgian
case-control study on bladder cancer. Int. J. Urol. 2006, 13,
1180-1184.
(40) Lyons, G. H.; Gene, Y.; Stangoulis, J. C. R.; Palmer, L. T.;
Graham, R. D. Selenium distribution in wheat grain, and the
effect of postharvest processing on wheat selenium content. Biol.
Trace Elem. Res. 2005, 103, 155-168.
(41) Schrauzer, G. N. The nutritional significance, metabolism and
toxicology of selenomethionine. AdV. Food Nutr. Res. 2003, 47,
73-112.
(42) Nigam, S. N.; McConnel, W. B. Seleno amino compounds from
Astragalus bisculcatus. Isolation and identification of gamma-
L-glutamyl-Se-methyl-seleno-L-cysteine and Se-methylseleno-
L-cysteine. Biochim. Biophys. Acta 1969, 192, 185-190.
(43) Trelease, S. E.; Di Somma, A. A.; Jacobs, A. L. Seleno-amino
acid found in Astragalus bisulcatus. Science 1960, 132, 618.
(44) Cai, X.; Block, E.; Uden, C. P.; Quimby, D. B.; Sullivan, J. J.;
Allium chemistry : Identification of selenoamino acids in
ordinary and selenium-enriched garlic, onion, and broccoli using
gas chromatograph with atomic emission detection. J. Agric.
Food Chem. 1995, 43, 1754-1757.
Received for review March 8, 2007. Revised manuscript received June
7, 2007. Accepted June 9, 2007. Portions of this research were carried
out at the Stanford Synchrotron Radiation Laboratory (SSRL), a
national user facility operated by Stanford University on behalf of the
U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL
Structural Molecular Biology Program is supported by the Department
of Energy, Office of Biological and Environmental Research, and by
the National Institutes of Health, National Center for Research
Resources, Biomedical Technology Program. Support for this work is
provided by the Canada Research Chairs Program (I.J.P., G.N.G.), the
Province of Saskatchewan, and NSERC Canada.
JF070681I