Letters
J. Phys. Chem. B, Vol. 107, No. 15, 2003 3335
surface coverage of ZnTPyP in the multiporphyrin monolayer,
Acknowledgment. This work was supported by NEDO’s
International Joint Research Grant Program. D.-J.Q. acknowl-
edges NEDO’s ITTF program.
-
10
2,8d
2.4 × 10
mol/cm , and the composition of Pd-ZnTPyP
multiporphyrin arrays (molar ratio of Pd to ZnTPyP, 2:1). The
data are summarized in Table 1. The hydrogen evolution rate
per nanogram of Pd(0) nanoparticles was also calculated, and
the data are listed in Tables 2 and 3.
References and Notes
A comparison of the data in Table 1 with those in Tables 2
and 3 reveals the following important features. First, the
encapsulated Pd(0) atoms show that the average hydrogen
(1) (a) Gao, J. S.; Arunagiri, T.; Chen, J. J.; Goodwill, P.; Chyan, O.
Chem. Mater. 2000, 12, 3495-3500. (b) Winkler, K.; de Bettencourt-Dias,
A.; Balch, A. L. Chem. Mater. 2000, 12, 1386-1392. (c) Shah, N.; Panjala,
D.; Huffman, G. P. Energy Fuels 2001, 15, 1528-1534. (d) King, R. B.;
Bhattacharyya, N. K.; Wiemers, K. D. EnViron. Sci. Technol. 1996,
30, 1292-1299. (e) King, R. B.; Bhattacharyya, N. K.; Smith, H. D.;
Wiemers, K. D. EnViron. Sci. Technol. 1997, 31, 984-992. (f) Jaramillo,
T. F.; Ivanovskaya, A.; McFarland, E. W. J. Comb. Chem. 2002, 4, 17-
-1
evolution rate per nanogram of Pd(0) is around 100 pmol mL
-
1
-1
min ng whereas that of the Pd(0) nanoparticles is in the
-
1
-1
-1
range of 0.2-20 pmol mL min ng . That is, the encap-
sulated Pd(0) atoms are of much higher catalytic activity than
the Pd(0) nanoparticles. Considering the size of the nano-
particles, we can find that the catalytic activity decreases as
the size of the nanoparticles increases. This is agreement with
Li et al.’s results in which higher catalytic activity was observed
22.
(2) (a) Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314-321.
(
(
(
b) Beletskaya, I. P.; Cheprakov, A. V. Chem. ReV. 2000, 100, 3009-3066.
c) Hierso, J. C.; Feurer, R.; Kalck, P. Chem. Mater. 2000, 12, 390-399.
d) Farthing, C. N.; Ko cˇ ovsk y´ , P. J. Am. Chem. Soc. 1998, 120, 6661-
6
672. (e) Koizumi, T.; Sakamoto, J.; Gondo, Y.; Endo, T. Macromolecules
6
c
for smaller Pd(0) nanoparticles in the Suzuki reaction. For
Pd(0) in the assembled films, Pd(0) atoms are well-separated
by porphyrin macrcycles, thus we can suppose that these Pd(0)
atoms are like single atoms, which may be the “smallest
particles” and an ideal catalyst. Second, the hydrogen evolution
rate is almost in proportion to the amount of Pd(0) when the
encapsulated Pd(0) multilayer was used as a catalyst (Table 1)
whereas only a slight increase was recorded when increasing
amounts of Pd(0) nanoparticles were used (Tables 2 and 3). As
a consequence, the hydrogen evolution rate per nanogram of
Pd(0) remains constant with increasing amounts of encapsulated
Pd(0) atoms (Table 1) whereas it decreases greatly for the
nanoparticles (Tables 2 and 3). This decrease should not be due
to the limit of the reactants since the amounts of EDTA,
ZnTMPyP, and MV2 are much larger than that of Pd(0)
nanoparticles. The constant hydrogen evolution rate is another
advantage of the encapsulated Pd(0) catalyst.
2002, 35, 2898-2902.
(3) (a) Bergbreiter, D. E.; Osburn, P. L.; Wilson, A.; Sink, E. M. J.
Am. Chem. Soc. 2000, 122, 9058-9064. (b) Rocaboy, C.; Gladysz, J. A.
Org. Lett. 2002, 4, 1993-1996.
(4) (a) Ohde, H.; Wai, C. M.; Kim, H.; Kim, J.; Ohde, M. J. Am. Chem.
Soc. 2002, 124, 4540-4541. (b) Hancu, D.; Green, J.; Beckman, E. J. Ind.
Eng. Chem. Res. 2002, 41, 4466-4474. (c) Hancu, D.; Beckman, E. J. Ind.
Eng. Chem. Res. 1999, 38, 2833-2841.
(5) (a) Liu, J.; Alvarez, J.; Ong, W.; Roman, E.; Kaifer, A. E. Langmuir
2001, 17, 6762-6764. (b) Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H.
Chem. Mater. 2000, 12, 3006-3011. (c) Ebitani, K.; Fujie, Y.; Kaneda, K.
Langmuir 1999, 15, 3557-3562.
(6) (a) Efremenko, I.; German, E. D.; Sheintuch, M. J. Phys. Chem. A
2000, 104, 8089-8096. (b) Fayet, P.; Kaldor, A.; Cox, D. M. J. Chem.
Phys. 1990, 92, 254-261. (c) Li, Y.; Boone, E.; El-Sayed, M. A. Langmuir
2
002, 18, 4921-4925.
(
7) (a) Chechik, V.; Crooks, R. M. J. Am. Chem. Soc. 2000, 122, 1243-
1
244. (b) Li, Y.; El-Sayed, M. A. J. Phys. Chem. B 2001, 105, 8938-
+
8943. (c) Lu, P.; Teranishi, T.; Asakura, K.; Miyake, M.; Toshima, N. J.
Phys. Chem. B 1999, 103, 9673-9682. (d) Rahim, E. H.; Kamounah, F.
S.; Frederiksen, J.; Christensen, J. B. Nano Lett. 2001, 1, 499-501. (e) Li,
Y.; Hong, X. M.; Collard, D. M.; El-Sayed, M. A. Org. Lett. 2000, 2, 2385-
2388.
In summary, we have demonstrated that single Pd(0) atoms
encapsulated in the ultrathin organized multiporphyrin arrays
are of high catalytic activityseven higher than that of the Pd(0)
nanoparticles. Because the encapsulated Pd(0) atoms are im-
mobilized on the glass surface, the catalyst separation is much
easier. These features indicate that the present encapsulated,
well-separated metals may be developed as efficient and easily
controlled catalysts.
(
8) (a) Qian, D. J.; Nakamura, C.; Miyake, J. Langmuir 2000, 16,
9
2
615-9619. (b) Qian, D. J.; Nakamura, C.; Miyake, J. Thin Solid Films
001, 397, 266-275. (c) Qian, D. J.; Nakamura, C.; Miyake, J. Chem.
Commun. 2001, 2312-2313. (d) Qian, D. J.; Nakamura, C.; Ishida, T.;
Wenk, S.-O.; Wakayama, T.; Takeda, S.; Miyake, J. Langmuir 2002, 18,
1
0237-10242.
(
9) Qian, D. J.; Wenk, S.-O.; Nakamura, C.; Wakayama, T.; Zorin,
N.; Miyake, J. Int. J. Hydrogen Energy 2002, 27, 1481-1487.
(10) Henglein, A. J. Phys. Chem. B 2000, 104, 6683-6685.