Please do not adjust margins
Dalton Transactions
Page 9 of 10
Journal Name
ARTICLE
Microporous Mesoporous Mater., 2016D,O2I2:510, .2170239-2/C797D. T04832G
2. S. S. Park, M. S. Moorthy and C.-S. Ha, Korean J. Chem. Eng.,
materials of MIMS-NHQ/NBPA were successfully fabricated via
co-condensation of TEOS and alkoxysilane precursors by a
triblock copolymer-templated sol-gel approach. The imprinting
molecules of HQ and BPA were introduced in the alkoxysilane
precursor via a thermally reversible covalent bond by linking
an imprinting molecule to a functional alkoxysilane monomer.
After a given thermal treatment, amino groups with higher
basicity and molecularly imprinted cavities were
simultaneously formed in the mesoporous framework wall.
1
1
2014, 31, 1707-1719.
3. M. von der Lehr, C. F. Seidler, D. H. Taffa, M. Wark, B. M.
Smarsly and R. Marschall, ACS Appl. Mater. Interfaces, 2016, 8,
25476-25488.
1
4. X. Wu, L. You, B. Di, W. Hao, M. Su, Y. Gu and L. Shen, J.
chromatogr.. A, 2013, 1299, 78-84.
5. X. Liu, P. Wang, L. Zhang, J. Yang, C. Li and Q. Yang, Chemistry,
2010, 16, 12727-12735.
1
Such hybrid mesoporous materials were then used to catalyze 16. Q. Yang, D. Han, H. Yang and C. Li, Chemistry, an Asian journal,
heterogeneous Knoevenagel reactions. As expected, the
materials with molecularly imprinted cavities gave higher
catalytic conversion and TOF number compared with the
materials with imprinting molecules due to the combined
advantages of active sites with higher basicity and molecularly
imprinted cavities.
The role of molecularly imprinted cavities in leading to
improved accessibility of the catalytic amino groups in the
framework wall was confirmed by comparing the conversions
with two control samples (SBA-15-APTES and SBA-15-APTES-
2008, 3, 1214-1229.
7. C. Baleizao, B. Gigante, D. Das, M. Alvaro, H. Garcia and A.
Corma, J. Catal., 2004, 223, 106-113.
8. Y.-J. Li, L. Wang and B. Yan, J. Mater. Chem., 2011, 21, 1130-
1
1
1
2
2
1
138.
9. M. Wu, Q. Meng, Y. Chen, Y. Du, L. Zhang, Y. Li, L. Zhang and J.
Shi, Adv. Mater., 2015, 27, 215-222.
0. S. H. Lee, S. S. Park, S. Parambadath and C.-S. Ha, Microporous
Mesoporous Mater., 2016, 226, 179-190.
1. D. Herault, G. Cerveau, R. J. P. Corriu, A. Mehdi, Dalton Trans.,
2011, 40, 446-451.
grafted). It was found that the size of imprinting molecules has 22. E. L. Margelefsky, A. Bendje´riou, R. K. Zeidan, V. r. Dufaud and
an influence on the catalytic conversion and TOF values, that
is, imprinting molecules with relatively bulkier size tend to
higher accessibility to the active sites. Finally, this work
provides a new way to realize extended exposure of active
organic species in the mesoporous framework wall through
the creation of cavities nearby the active sites.
Yang, J. Wang, D. Al-Dahyan and D. Zhao, RSC Adv., 2016, 6,
1470-51479.
3. J. Alauzun, A. Mehdi, C. Reye´, R. J. P. Corriu, J. Am. Chem.
Soc., 2006, 128, 8718-8719.
4. Z. Zhou, F. Piepenbreier, V. R. R. Marthala, K. Karbacher and M.
Hartmann, Catal. Today, 2015, 243, 173-183.
5
2
2
2
2
5. N. K. Mal, M. Fujiwara and Y. Tanaka, Nature, 2003, 421, 350-
353.
6. Y. L, Y. Jiang, Z. Ruan, K. Lin, Z. Yu, Z. Zheng, X. Xu and Y. Yuan,
Acknowledgements
J.Mater. Chem. A, 2017, 5, 21300-21312.
2
2
2
3
7. L. Qin, W. Shi, W. Liu, Y. Yang, X. Liu and B. Xu, Rsc Adv., 2016,
, 12504-12513.
8. Y. Chen, D. Li, Z. Bie, X. He and Z. Liu, Anal. Chem., 2016, 88,
447-1454.
9. C. Li, H. Zhang, D. Jiang and Q. Yang, Chem. Commun., 2007, 0,
47-558.
This work was supported by National Natural Science Foundation of
China (51472062) and the Opening Project of Key Laboratory of
Polyoxometalate Science of Ministry of Education.
6
1
5
Notes and references
0. S. Roy, P. Bhanja, S. Safikul Islam, A. Bhaumik and S. M. Islam,
1.
2.
3.
4.
5.
L. Wang, J. Zhang, X. Yi, A. Zheng, F. Deng, C. Chen, Y. Ji, F. Liu,
X. Meng and F.-S. Xiao, ACS Catal., 2015, 5, 2727-2734.
L. Li, D. Cani and P. P. Pescarmona, Inorg. Chim. Acta, 2015,
Chem. Commun., 2016, 52, 1871-1874.
31. S. Xiang, Y. Zhang, Q. Xin and C. Li, Angew. Chem. Int. Ed.,
2002, 41, 821-824.
32. T. Cheng, Q. Zhao, D. Zhang and G. Liu, Curr.Org.Chem., 2015,
19, 667-680.
33. C. Tourné-Péteilh, D. Brunel, S. Bégu, B. Chiche, F. Fajula, D. A.
Lerner and J.-M. Devoisselle, New J. Chem., 2003, 27, 1415-
1418.
4
31, 289-296.
D. Li, L. Zeng, X. Li, X. Wang, H. Ma, S. Assabumrungrat and J.
Gong, Appl. Catal. B: Environmental, 2015, 176-177, 532-541.
W. Fu, L. Zhang, D. Wu, M. Xiang, Q. Zhuo, K. Huang, Z. Tao
and T. Tang, J. Catal., 2015, 330, 423-433.
N. Lu, Y. Tian, W. Tian, P. Huang, Y. Liu, Y. Tang, C. Wang, S. 34. N. K. Mal, M. Fujiwara, Y. Tanaka, T. Taguchi and M. Matsukata,
Wang, Y. Su, Y. Zhang, J. Pan, Z. Teng and G. Lu, ACS Appl
Mater. Interfaces, 2016, 8, 2985-2993.
Chem. Mater., 2003, 15, 3385-3394.
35. D. Jiang, Q. Yang, J. Yang, L. Zhang, G. Zhu, W. Su and C. Li,
Chem. Mater., 2005, 17, 6154-6160.
36. S. Muratsugu, N. Maity, H. Baba, M. Tasaki and M. Tada,
Dalton Trans., 2017, 46, 3125-3134.
6
7
8
9
1
.
.
.
.
R. Ran, L. You, B. Di, W. Hao, M. Su, F. Yan and L. Huang, J. Sep.
Sci., 2012, 35, 1854-1862.
K. Sim, N. Lee, J. Kim, E. B. Cho, C. Gunathilake and M.
Jaroniec, ACS Appl. Mater. Interfaces, 2015, 7, 6792-6802.
H.-T. Chen, S. Huh, J. W. Wiench, M. Pruski and V. S.-Y. Lin, J.
Am. Chem. Soc., 2005, 127, 13305-13311.
37. Y. Yang, Z. Weng, S. Muratsugu, N. Ishiguro, S. Ohkoshi and M.
Tada, Chem. Eur. J., 2012, 18, 1142-1153.
38. J. Yin, Y. Cui, G. Yang and H. Wang, Chem. Commun., 2010, 46,
7688-7690.
39. M. Ravera, E. Gabano, I. Zanellato, E. Perin, A. Arrais and D.
Osella, Dalton Trans., 2016, 45, 17233-17240.
Y. Wei, X. Li, A. A. Elzatahry, R. Zhang, W. Wang, X. Tang, J. M.
E. Davis, J. Am. Chem. Soc., 2008, 130, 13442–13449.
0. F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angew.
Chem. Int. Ed, 2006, 45, 3216-3251.
40. R. N. Liang, D. A. Song, R. M. Zhang and W. Qin, Angew. Chem.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins