The Journal of Physical Chemistry A
ARTICLE
ꢀ
1a
Table 2. Pressure-Dependent Absorption Cross Sections at the Center of the Strongest Line at 6642.51 cm
He
N
2
pressure (Torr)
ꢀ21
6642.51cmꢀ1 (10
2
ꢀ21
6642.46cmꢀ1 (10
2
ꢀ21
6642.51cmꢀ1 (10
2
ꢀ21
2
σ
cm )
σ
cm )
σ
cm )
σ
6642.46cmꢀ1 (10 cm )
1
4
7
0
0
4
7.0 ( 2.6
5.8 ( 2.2
4.6 ( 1.8
1.8 ( 1.0
2.1 ( 1.1
6.6 ( 2.5
5.1 ( 2.0
4.3 ( 1.8
1.8 ( 1.0
2.3 ( 1.2
2.4 ( 1.2
2.3 ( 1.2
ꢀ1
a
For practical purposes, the absorption cross section at 6642.46 cm is also given (see text).
sections in the center of the strongest absorption line in Table 2
for the three individual pressures and for both bath gases, He and
N . It is not always possible to measure the baseline in the
2
’ REFERENCES
(1) Volkamer, R.; Sheehy, P.; Molina, L. T.; Molina, M. J. Atmos.
Chem. Phys. 2010, 10, 6969–6991.
absence of HONO, for example, in atmospheric simulation
chambers. For this reason, we have also added the pressure-
(2) Liao, W.; Case, A. T.; Mastromarino, J.; Tan, D.; Dibb, J. E.
Geophys. Res. Lett. 2006, 33, L09810.
ꢀ
1
(
3) Hellebust, S.; Roddis, T.; Sodeau, J. R. J. Phys. Chem. A 2007,
11, 1167–1171.
4) Monge, M. E.; D'Anna, B.; George, C. Phys. Chem. Chem. Phys.
010, 12, 8991–8998.
5) Langridge, J. M.; Gustafsson, R. J.; Griffiths, P. T.; Cox, R. A.;
dependent minimum absorption cross section at 6642.46 cm
.
1
(
2
’
CONCLUSION
The near-IR spectrum of a portion of the 2ν absorption band
(
1
Lambert, R. M.; Jones, R. L. Atmos. Environ. 2009, 43, 5128–5131.
(6) Rohrer, F.; Bohn, B.; Brauers, T.; Br €o ning, D.; Johnen, F.-J.;
Wahner, A.; Kleffmann, J. Atmos. Chem. Phys. 2005, 5, 2189–2201.
of the cis-isomer of HONO has been measured at a total pressure
ꢀ
1
of 40 Torr helium in the range 6623.6ꢀ6645.6 cm , using two
different methods for generating HONO. Absolute absorption
cross sections for selected nitrous acid lines have been deter-
mined through calibration of the generated HONO concentra-
(
7) Djehiche, M.; Tomas, A.; Fittschen, C.; Coddeville, P. Environ.
Sci. Technol. 2011, 45, 608–614.
8) Jain, C.; Parker, A. E.; Schoemaecker, C.; Fittschen, C. Chem-
PhysChem 2010, 11, 3867–3873.
9) Aluculesei, A.; Tomas, A.; Schoemaecker, C.; Fittschen, C. Appl.
Phys. B: Lasers Opt. 2008, 92, 379–385.
(
tion against the well-known HO absorption cross section. The
2
(
strongest line in this wavelength range has been found at
ꢀ
1
ꢀ21
2
6
642.50 cm with σ = (5.8 ( 2.2) ꢁ 10
cm . Using current
(10) Perner, D.; Platt, U. Geophys. Res. Lett. 1979, 6, 917–920.
cw-CRDS setups, HONO concentrations of as low as 1 ꢁ
(11) Karlsson, R. S.; Ljungstrom, E. B. Environ. Sci. Technol. 1996,
1
2
ꢀ3
ꢀ9
ꢀ1
1
0
cm (corresponding to α = 5 ꢁ 10 cm ) can easily
30, 2008–2013.
be quantified at 40 Torr He. Pressure broadening up to 74 Torr
(12) Yamano, D.; Yabushita, A.; Kawasaki, M.; Perrin, A. J. Quant.
Spectrosc. Radiat. Transfer 2010, 111, 45–51.
has been measured of the most intense line for He and N as bath
2
(
13) Sironneau, V.; Orphal, J.; Demaison, J.; Chelin, P. J. Phys. Chem.
A 2008, 112, 10697–10702.
14) Guilmot, J. M.; Godefroid, M.; Herman, M. J. Mol. Spectrosc.
993, 160, 387–400.
15) Guilmot, J. M.; Melen, F.; Herman, M. J. Mol. Spectrosc. 1993,
60, 401–410.
gas. The results show that absorption spectroscopy in the near-IR
range is not suitable for atmospheric measurements due to a too
small absorption cross section combined with strong pressure
broadening. However, it can provide an interesting tool for
laboratory studies.
(
1
(
1
(16) Stockwell, W. R.; Calvert, J. G. J. Photochem. 1978, 8, 193–203.
(
17) Febo, A.; Perrino, C.; Gherardi, M.; Sparapani, R. Environ. Sci.
’
ASSOCIATED CONTENT
Technol. 1995, 29, 2390–2395.
18) Stutz, J.; Kim, E. S.; Platt, U.; Bruno, P.; Perrino, C.; Febo, A.
J. Geophys. Res. 2000, 105, 14585–14592.
19) Barney, W. S.; Wingen, L. M.; Lakin, M. J.; Brauers, T.; Stutz, J.;
(
S
Supporting Information. Six individual lines measured
b
at high resolution as well as the full spectrum as obtained with
both methods. This material is available free of charge via the
Internet at http://pubs.acs.org.
(
Finlayson-Pitts, B. J. J. Phys. Chem. A 2000, 104, 1692–1699.
(20) Varma, R.; Curl, R. F. J. Phys. Chem. 1976, 80, 402–409.
(
21) Thiebaud, J.; Crunaire, S.; Fittschen, C. J. Phys. Chem. A 2007,
11, 6959–6966.
22) Tang, Y.; Tyndall, G. S.; Orlando, J. J. J. Phys. Chem. A 2010,
1
’
AUTHOR INFORMATION
(
Corresponding Author
114, 369–378.
*E-mail: christa.fittschen@univ-lille1.fr.
(23) Thiebaud, J.; Fittschen, C. Appl. Phys. B: Lasers Opt. 2006,
5, 383–389.
8
(24) Parker, A.; Jain, C.; Schoemaecker, C.; Szriftgiser, P.; Votava,
O.; Fittschen, C. Appl. Phys. B: Lasers Opt. 2011, 103, 725–733.
(25) Thiebaud, J.; Aluculesei, A.; Fittschen, C. J. Chem. Phys. 2007,
’
ACKNOWLEDGMENT
1
26, 186101.
26) Vaghjiani, G. L.; Ravishankara, A. R. J. Chem. Phys. 1990,
2, 996–1003.
27) Johansson, O.; Bood, J.; Alden, M.; Lindblad, U. Appl. Phys. B:
Lasers Opt. 2009, 97, 515–522.
28) Vaghjiani, G.; Ravishankara, A. J. Geophys. Res. 1989,
The laboratory participates in the Institut de Recherche en
(
ENvironnement Industriel (IRENI), which is financed by R ꢁe gion
Nord Pas-de-Calais, the Minist ꢀe re de l'Enseignement Sup ꢁe rieur
et de la Recherche, the CNRS, and European Regional Devel-
opment Fund (ERDF). The authors are thankful for financial
support through the “Program Hubert Curien” Balaton. C.J.
thanks the European Union for financial support through project
MEST-CT-2005-020659.
9
(
(
9
4, 3487–3492.
(29) Forster, R.; Frost, M.; Fulle, D.; Hamann, H. F.; Hippler, H.;
Schlepegrell, A.; Troe, J. J. Chem. Phys. 1995, 103, 2949–2958.
1
0727
dx.doi.org/10.1021/jp203001y |J. Phys. Chem. A 2011, 115, 10720–10728