Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Journal of the American Chemical Society
Communication
the number of γ4 → II replacements across the series 1−4
improves the overlay of the NMR-derived structures with 12-
helical conformations observed for crystalline α/γ-peptides,
whether the oligomer crystallized contains constrained γ residue
I or unconstrained γ4 residues; this trend is illustrated for a
specific α/γ4-peptide crystal structure in Figure 6.
REFERENCES
■
(1) (a) Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.;
Gellman, S. H. J. Am. Chem. Soc. 1996, 118, 13071. (b) Appella, D. H.;
Christianson, L. A.; Klein, D. A.; Powell, D. R.; Huang, X.; Barchi, J. J.,
Jr.; Gellman, S. H. Nature 1997, 387, 381. (c) Hayen, A.; Schmitt, M. A.;
Ngassa, F. N.; Thomasson, K. A.; Gellman, S. H. Angew. Chem., Int. Ed.
2004, 43, 505. (d) De Pol, S.; Zorn, C.; Klein, C. D.; Zerbe, O.; Reiser,
O. Angew. Chem., Int. Ed. 2004, 43, 511. (e) Fernandes, C.; Faure, S.;
́
Pereira, E.; Thery, V.; Declerck, V.; Guillot, R.; Aitken, D. J. Org. Lett.
2010, 12, 3606. (f) Lee, M.; Shim, J.; Kang, P.; Choi, M. G.; Choi, S. H.
Chem. Commun. 2016, 52, 5950.
(2) (a) O’Neil, K. T.; DeGrado, W. F. Science 1990, 250, 646.
(b) Minor, D. L., Jr.; Kim, P. S. Nature 1994, 367, 660.
(3) Muller, M. M.; Windsor, M. A.; Pomerantz, W. C.; Gellman, S. H.;
̈
Hilvert, D. Angew. Chem., Int. Ed. 2009, 48, 922.
(4) Ma, C. D.; Wang, C.; Acevedo-Vel
L. Nature 2015, 517, 347.
́
ez, C.; Gellman, S. H.; Abbott, N.
(5) Johnson, L. M.; Gellman, S. H. Methods Enzymol. 2013, 523, 407.
(6) (a) Hanessian, S.; Luo, X.; Schaum, R.; Michnick, S. J. Am. Chem.
Soc. 1998, 120, 8569. (b) Seebach, D.; Brenner, M.; Rueping, M.;
Schweizer, B.; Jaun, B. Chem. Commun. 2001, 207. (c) Bouiller
̀
e, F.;
Figure 6. Comparison of NMR structures of α/γ-peptides 1−4 with a
12-helix crystal structure from ref 11c. Black dots are backbone RMSDs
of the 10 lowest-energy NMR structures. Mean pairwise RMSDs of each
set of NMR structures vs the crystal structure are shown with red bars.
Thetiot-Laurent, S.; Kouklovsky, C.; Alezra, V. Amino Acids 2011, 41,
́
687. (d) Nodes, W. J.; Nutt, D. R.; Chippindale, A. M.; Cobb, A. J. A. J.
Am. Chem. Soc. 2009, 131, 16016. (e) Pendem, N.; Nelli, Y. R.; Douat,
C.; Fischer, L.; Laguerre, M.; Ennifar, E.; Kauffmann, B.; Guichard, G.
Angew. Chem., Int. Ed. 2013, 52, 4147. (f) Mathieu, L.; Legrand, B.;
Deng, C.; Vezenkov, L.; Wenger, E.; Didierjean, C.; Amblard, M.;
Averlant-Petit, M. C.; Masurier, N.; Lisowski, V.; Martinez, J.; Maillard,
L. T. Angew. Chem., Int. Ed. 2013, 52, 6006.
The 2D-NMR data presented here for α/γ-peptides 1−4, as
18
1
well as other H NMR data, support the hypothesis that the
cyclic constraint in II stabilizes the 12-helix. γ4 Residues,
intrinsically more flexible than is II, have a modest propensity for
12-helix formation, as indicated by previous reports12,13 and by
our NMR results in methanol. However, analysis of 1−4 in
aqueous solution reveals a clear distinction between 12-helical
propensities of II and γ4 residues, which decisively addresses
questions raised by recent studies.12,13 These results are
significant since the impact of γ residue constraint on foldamer
secondary structure has received very little scrutiny, in part
because there has been very little previous study of γ-containing
foldamers in aqueous solution.11c,19 Our demonstration that the
preorganization inherent in γ residue II favors a specific
secondary structure should encourage fundamental research on
new foldamer building blocks that favor adoption of discrete and
diverse conformations.
(7) (a) Grison, C. M.; Robin, S.; Aitken, D. J. Chem. Commun. 2015, 51,
16233. (b) Grison, C. M.; Robin, S.; Aitken, D. J. Chem. Commun. 2016,
52, 7802.
(8) (a) Ananda, K.; Vasudev, P. G.; Sengupta, A.; Raja, K. M.; Shamala,
N.; Balaram, P. J. Am. Chem. Soc. 2005, 127, 16668. (b) Vasudev, P. G.;
Ananda, K.; Chatterjee, S.; Aravinda, S.; Shamala, N.; Balaram, P. J. Am.
Chem. Soc. 2007, 129, 4039.
(9) Vasudev, P. G.; Chatterjee, S.; Shamala, N.; Balaram, P. Acc. Chem.
Res. 2009, 42, 1628.
(10) Guo, L.; Chi, Y.; Almeida, A. M.; Guzei, I. A.; Parker, B. K.;
Gellman, S. H. J. Am. Chem. Soc. 2009, 131, 16018.
(11) (a) Guo, L.; Almeida, A. M.; Zhang, W.; Reidenbach, A. G.; Choi,
S. H.; Guzei, I. A.; Gellman, S. H. J. Am. Chem. Soc. 2010, 132, 7868.
(b) Guo, L.; Zhang, W.; Reidenbach, A. G.; Giuliano, M. W.; Guzei, I. A.;
Spencer, L. C.; Gellman, S. H. Angew. Chem., Int. Ed. 2011, 50, 5843.
(c) Shin, Y. H.; Mortenson, D. E.; Satyshur, K. A.; Forest, K. T.;
Gellman, S. H. J. Am. Chem. Soc. 2013, 135, 8149.
(12) (a) Bandyopadhyay, A.; Gopi, H. N. Org. Lett. 2012, 14, 2770.
(b) Bandyopadhyay, A.; Jadhav, S. V.; Gopi, H. N. Chem. Commun.
2012, 48, 7170. (c) Jadhav, S. V.; Bandyopadhyay, A.; Gopi, H. N. Org.
Biomol. Chem. 2013, 11, 509. (d) Jadhav, S. V.; Misra, R.; Singh, S. K.;
Gopi, H. N. Chem. - Eur. J. 2013, 19, 16256. (e) Jadhav, S. V.; Misra, R.;
Gopi, H. N. Chem. - Eur. J. 2014, 20, 16523.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/jacs.6b06177.
Experimental details, including synthetic route to II; NMR
spectra; HDX, VT-NMR, and J-coupling analysis; ROESY
crosspeak assignments; CD data; comparison of I and γ4
structure; and NMR calculation parameters (PDF)
(13) (a) Basuroy, K.; Dinesh, B.; Shamala, N.; Balaram, P. Angew.
Chem., Int. Ed. 2012, 51, 8736. (b) Sonti, R.; Dinesh, B.; Basuroy, K.;
Raghothama, S.; Shamala, N.; Balaram, P. Org. Lett. 2014, 16, 1656.
(14) (a) Appella, D. H.; Barchi, J. J.; Durell, S. R.; Gellman, S. H. J. Am.
Chem. Soc. 1999, 121, 2309. (b) LePlae, P. R.; Fisk, J. D.; Porter, E. A.;
Weisblum, B.; Gellman, S. H. J. Am. Chem. Soc. 2002, 124, 6820. (c) Vaz,
E.; Pomerantz, W. C.; Geyer, M.; Gellman, S. H.; Brunsveld, L.
ChemBioChem 2008, 9, 2254. (d) Schmitt, M. A.; Choi, S. H.; Guzei, I.
A.; Gellman, S. H. J. Am. Chem. Soc. 2005, 127, 13130.
AUTHOR INFORMATION
Corresponding Author
■
(15) Arvinte, T.; Drake, A. F. J. Biol. Chem. 1993, 268, 6408.
(16) Zagrovic, B.; van Gunsteren, W. F. Proteins: Struct., Funct., Genet.
2006, 63, 210.
Notes
The authors declare no competing financial interest.
(17) Brunger, A. T. Nat. Protoc. 2007, 2, 2728.
(18) See Supporting Information for discussion.
(19) Sawada, T.; Gellman, S. H. J. Am. Chem. Soc. 2011, 133, 7336.
ACKNOWLEDGMENTS
■
This work was supported by NSF grant CHE-1307365. NMR
spectrometers were purchased with support from a generous gift
by Paul J. Bender and from NIH (S10 OD012245).
D
DOI: 10.1021/jacs.6b06177
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX