Scheme 1
Scheme 2
mechanism was identified in the present reaction system
1
(Scheme 2). In methanol-d4, the H NMR spectrum of the
crude product from the reaction of Danishefsky’s diene with
aldimine revealed the exclusive presence of a Mannich-type
condensation adduct.17
synthesis.16 An attempt to form the imine of 4-anisidine in
situ in the presence of Danishefsky’s diene in methanol at
room temperature afforded the expected cycloproduct with
two diastereomers 7a and 7b in moderate yield (66%) and
good stereoselectivity (80/20) (Scheme 1).
In conclusion, the aza Diels-Alder reaction of Danishef-
sky’s diene with imines has been found to proceed efficiently
in methanol in the absence of any acids at room temperature
to give corresponding 2-substituted dihydro-4-pyridone
derivatives in high yields. The further evolution of this
reaction to a three-component one-pot procedure and an
asymmetric version using a chiral auxiliary was also
achieved. The determination of the primary product formed
in the reaction system combined with the observed solvent
effect demonstrated that the reaction proceeded through a
stepwise Mannich-type condensation mechanism.
An important question arises regarding the mechanism of
the condensation of Danishefsky’s diene with aldimine in
methanol. A concerted [4 + 2] cycloaddition mechanism has
been suggested in the Lewis acid-catalyzed reaction reported
by Danishefsky3, whereas a Mannich-type condensation
(9) (a) Hamley, P.; Helmchen, G.; Holmes, A. B.; Marshall, D. R.;
Mackinnon, J. W. M.; Smith, D. F.; Ziller, J. W. J. Chem. Soc., Chem.
Commun. 1992, 786-788. (b) Abraham, H.; Stella, L. Tetrahedron 1992,
48, 9707-9718. (c) MacFalane, A. K.; Thomas, G.; Whiting, A. Tetrahe-
dron Lett. 1993, 34, 2379-2382. (d) Bailey, P. D.; Londesbrough, D. J.;
Hancox, T. C.; Heffernan, J. D.; Holmes, A. B. J. Chem. Soc., Chem.
Commun. 1994, 2543-2544. (e) Ager, D.; Cooper, N.; Cox, G. G.; Garro-
Helion, F.; Harwood, L. M. Tetrahedron: Asymmetry 1996, 7, 2563-2566.
(10) (a) Midland, M. M.; Koops, R. W. J. Org. Chem. 1992, 57, 1158-
1161. (b) Ishimaru, K.; Yamamoto, Y.; Akiba, K. Tetrahedron 1997, 53,
5423-5432. (c) Herczegh, P.; Kovacs, I.; Erdosi, G.; Varga, T.; Agocs,
A.; Szilagyi, L.; Staricskai, F.; Bereceibar, A.; Lukacs, G.; Olesker, A. Pure
Appl. Chem. 1997, 69, 519-524. (d) Yu, L.; Li, J.; Ramirez, J.; Chem, D.;
Wang, P. G. J. Org. Chem. 1997, 62, 903-907.
Acknowledgment. Financial support from the National
Natural Science Foundation of China, Chinese Academy of
Sciences, the Major Basic Research Development Program
of China (Grant G2000077506), and the Ministry of Science
and Technology of Commission of Shanghai Municipality
is gratefully acknowledged.
Supporting Information Available: Experimental details
(11) Kuethe, J. T.; Davies, I. W.; Dormer, P. G.; Reamer, R. A.; Mathre,
D. J.; Reider, P. J. Tetrahedron Lett. 2002, 43, 29-32.
1
and spectral data for the cycloadducts, H NMR spectra of
(12) (a) Kunz, H.; Pfrengle, W. Angew. Chem., Int. Ed. 1989, 28, 1067-
1069. (b) Weymann, W.; Pfrengle, W.; Schollmeyer, D.; Kunz, H. Synthesis
1997, 1151-1160.
the crude condensation adduct of the reaction between 1 and
1
2a in methanol and diastereomers of 7, H-1H COSY
1
(13) (a) Larsen, S. D.; Grieco, P. A. J. Am. Chem. Soc. 1985, 107, 1768-
1769. (b) Waldmann, H. Synlett 1995, 133-141.
spectrum of 7a, and H NMR spectra of products. This
material is available free of charge via the Internet at
(14) Devine, P. N.; Reilly, M.; Oh, T. Tetrahedron Lett. 1993, 34, 5827-
5830.
(15) (a) Hattori, K.; Yamamoto, H. Tetrahedron 1993, 49, 1749-1760.
(b) Hattori, K.; Yamamoto, H. J. Org. Chem. 1992, 57, 3264-3265.
(16) Badorrey, R.; Cativiela, C.; Diaz-de-Villegas, M. D.; Galvez, J. A.
Tetrahedron 1999, 55, 7601-7612.
OL0265822
(17) See Supporting Information.
Org. Lett., Vol. 4, No. 19, 2002
3311