M. Nanjo et al. / Tetrahedron Letters 46 (2005) 8945–8947
8947
t
7. Typically, enantiomerically enriched silanes or germanes
can be prepared by the optical resolution of (À)-menth-
oxymethyl(1-naphthyl)phenylsilane or germane, see for
example: (a) Sommer, L. H.; Frye, C. L. J. Am. Chem.
Soc. 1959, 81, 1013; (b) Brook, A. G.; Limburg, W. W. J.
Am. Chem. Soc. 1963, 85, 832; (c) Eaborn, C.; Steward, O.
W. Proc. Chem. Soc. 1965, 521.
was reacted with 2Æsp to give BuMePhGeCH2Ph (17%,
t
23% ee) and BuMePhGeH (15%, 46% ee) with a trace
amount of (tBuMePhGe)2. Although this reaction is
not clean and unidentified products were observed, it
is noted that the resulting tBuMePhGeH has small enan-
tiomeric excess, suggesting that the racemization took
place in the course of the electron transfer reaction.
8. For example, the optical purity of MeNpPhSiLi in THF at
À78 °C keeps 85% ee for 1 h, however, the purity
decreased to 50% ee upon raising the temperature up to
0 °C. See Ref. 5.
We have accomplished a convenient access to optically
active silyl- and germyllithiums compounds by only
addition of (À)-sparteine ligand. The structure and reac-
tivity of optically active silyl- and germyllithium, and
their application to organic synthesis are now under
study.
9. The temperature-dependent NMR experiment was per-
formed in mesitylene-d12 with
a Varian Inova 400
spectrometer (1H NMR at 400.0 MHz and 7Li NMR at
155.4 MHz). No change was observed in the 1H NMR
spectra of 1 at the temperatures ranging from 298 to
423 K.
Experimental procedure and NMR spectral data for 1Æsp
and 2Æsp (PDF). X-ray structural data for 1Æsp and 2Æsp
(CIF). These materials are available free of charge via
10. Compound 2Æsp: mp = 160–161 °C (dec); 1H NMR (C6D6,
t
d) 0.68 (s, 3H, Me), 1.42(s, 9H, Bu), 0.5–3.3 (m, 45H, sp),
7.22–7.28 (m, 1H, Ph), 7.40–7.46 (m, 2H, Ph), 7.98–8.02
(m, 2H, Ph); 13C NMR (C6D6, d) 0.4 (Me), 18.1, 22.0
(CMe3), 24.0, 24.6, 25.0, 25.6, 28.2, 30.2, 31.9 (CMe3),
34.8, 35.0, 45.8, 54.3, 57.4, 59.3, 60.6, 66.5, 124.4, 127.0,
7
135.8, 160.6; Li NMR (C6D6, d) 2.11.
Acknowledgments
11. Crystal structure analysis of (R)-2Æsp: Diffraction data
were collected at 120 K on a MacScience DIP2030 image
plate diffractometer employing graphite-monochro-
This work was supported by a Grant-in-Aid for Scien-
tific Research (No. 13740359) from the Ministry of Edu-
cation, Science, Sports and Culture, Japan. We wish to
thank Dr. V. Ya. Lee of University of Tsukuba for help-
ful discussions and for comments on this manuscript.
˚
mated Mo(Ka) radiation (k = 0.71073 A); MF = C26H43-
GeLiN2, MW = 463.15, monoclinic, P21, a = 10.0640(8),
˚
b = 12.9750(9), c = 10.1840(8) A, b = 107.659(4)°, V =
3
1267.17(17) A , Z = 2 ,Dcalcd = 1.214 g cmÀ3. The final R
˚
factor and GOF indicator were 0.0595 (wR2= 0.1793 for
all data) and 1.639, respectively, for 3390 reflections with
I > 2r(I). The absolute structure parameter converged to
0.00(2). CCDC reference number 194094.
References and notes
12. (Me3Si)3GeLi: (a) Freitag, S.; Herbst-Irmer, R.; Lameyer,
L.; Stalke, D. Organometallics 1996, 15, 2839; (b) Heine, A.;
Stalke, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 113;
Germole anions: (c) Hong, J.-H.; Pan, H.; Boudjouk, P.
Angew. Chem., Int. Ed. 1996, 35, 186; (d) West, R.; Sohn,
1. For reviews, see: (a) Tamao, K.; Kawachi, A. Adv.
Organomet. Chem. 1995, 38, 1; (b) Lickiss, P. D.; Smith,
C. M. Coord. Chem. Rev. 1995, 145, 75; (c) Belzner, Z.;
Dehnert, U. In The Chemistry of Organosilicon Com-
pounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chich-
ester, 1998; Vol. 2, p 779; (d) Sekiguchi, A.; Lee, V. Y.;
H.; Powell, D. R.; Muller, T.; Apeloig, Y. Angew. Chem.,
¨
´
Int. Ed. 1996, 35, 1002; Ar3GeLi (Ar = 2-(dimethyl-
amino)phenyl): (e) Kawachi, A.; Tanaka, Y.; Tamao, K.
Eur. J. Inorg. Chem. 1999, 461; Very recently, a nonsolvated
monomeric germyllithium [(tBu2MeSi)3GeLi] has been
reported, and its structure has a short Ge–Li bond length
Nanjo, M. Coord. Chem. Rev. 2000, 210, 11; (e) Riviere,
P.; Castel, A.; Riviere-Baudet, M. In The Chemistry of
Organic Germanium, Tin, and Lead Compounds; Rappo-
port, Z., Ed.; Wiley, 2002; Vol. 2, p 653.
2. Brook, A. G.; Peddle, G. J. D. J. Am. Chem. Soc. 1963, 85,
2338.
˚
of 2.518(7) A, see: (f) Nakamoto, M.; Fukawa, T.; Lee, V.
Ya.; Sekiguchi, A. J. Am. Chem. Soc. 2002, 124, 15160.
3. Sommer, L. H.; Lyons, J. E.; Fujimoto, H. J. Am. Chem.
Soc. 1965, 91, 7051.
4. (a) Colomer, E.; Corriu, R. J. P. J. Chem. Soc., Chem.
Commun. 1976, 176; (b) Colomer, E.; Corriu, R. J. P.
J. Organomet. Chem. 1977, 133, 159.
5. Omote, M.; Tokita, T.; Shimizu, Y.; Imae, I.; Shirakawa,
E.; Kawakami, Y. J. Organomet. Chem. 2000, 611, 2 0.
6. Strohmann, C.; Ho¨rnig, J.; Auer, D. Chem. Commun.
2002, 766.
1
13. Compound 1Æsp: mp = 119–120 °C; H NMR (400 MHz,
C6D6, d) 0.68 (s, 3H, Me), 1.42(s, 9H, tBu), 0.5–3.4 (m,
45H, sp), 7.23–7.28 (m, 1H, Ph), 7.42–7.48 (m, 2H, Ph),
7.97–8.02(m, 2H, Ph); 13C NMR (100 MHz, C6D6, d) 0.9
(Me), 18.0, 19.6 (CMe3), 23.9, 24.5, 25.0, 25.9, 28.1, 30.3,
31.2(C Me3), 34.7, 34.9, 45.8, 54.5, 57.3, 59.3, 60.4, 66.0,
7
124.7, 126.8, 135.8, 156.6; Li NMR (155 MHz, C6D6, d)
1.92.