Matrix Isolation of 3,4-Benzocyclodeca-3,7,9-triene-1,5-diyne
FULL PAPER
[1]
[2]
[3]
[4]
[5]
[6]
K. C. Nicolaou, W. M. Dai, Angew. Chem. 1991, 103,
1453Ϫ1481; Angew. Chem. Int. Ed. Engl. 1991, 30, 1387.
W. R. Roth, H. Hopf, C. Horn, Chem. Ber. 1994, 127,
1765Ϫ1779.
N. Darby, C. U. Kim, J. A. Salaun, K. W. Shelton, S. Takada,
S. Masamune, J. Chem. Soc. (D) 1971, 1516Ϫ1517.
O. L. Chapman, C. C. Chang, J. Kolc, J. Am. Chem. Soc. 1976,
98, 5703Ϫ5705.
M. J. Schottelius, P. Chen, J. Am. Chem. Soc. 1996, 118,
4896Ϫ4903.
C. F. J. Wilcox, K. A. Weber, J. Org. Chem. 1986, 51,
1088Ϫ1094.
S. Masamune, N. Darby, Acc. Chem. Res. 1972, 5, 272Ϫ281.
R. Herges, H. Neumann, F. Hampel, Angew. Chem. 1994, 106,
1024Ϫ1026; Angew. Chem. Int. Ed. Engl. 1994, 33, 993Ϫ995.
IR bands of anthraquinone (Ar, 10 K): ν˜ ϭ 625 (7), 702 (33),
812 (8), 908 (3), 933 (4), 939 (33), 1159 (2), 1170 (6), 1207 (3),
1266 (2), 1289 (96), 1306 (43), 1316 (46), 1332 (56), 1477 (3),
1597 (28), 1681 (100), 1707 (1), 1725 (2), 1969 (1), 3079 (4) cmϪ1
(rel. intensity).
quartz tube placed 3 cm in front of the cold window. In order to
obtain short contact times, a heating zone of only 3 cm in length
was used. A large excess of argon and the precursor were passed
through the pyrolysis zone and the products were directly trapped
on top of the cold window at 10 K. Ϫ Infrared spectra were re-
corded using a Bruker IFS-66 FT-IR spectrometer with a standard
resolution of 1 cmϪ1 in the range 400Ϫ4000 cmϪ1. Irradiations
were carried out by means of Osram HBO 500 W/2 mercury high-
pressure arc lamps in Oriel housings equipped with quartz optics
or a Gräntzel mercury low-pressure lamp (254 nm). IR radiation
from the arc lamp was absorbed by a 10-cm path of water. Schott
cut-off filters were used (50% transmission at the wavelength speci-
fied) in combination with dichroic mirrors.
[7]
[8]
[9]
Tetradehydrodiepoxydianthracene 7: A solution of 191.1 mg
(1.136 mmol) of m-chloroperbenzoic acid in 100 ml of dichloro-
methane was added dropwise to a solution of 200 mg (0.568 mmol)
of tetradehydrodianthracene[21] in 200 ml of dichloromethane. The
mixture was stirred for 30 min at room temp. and then the solvent
was evaporated. The yellowish residue was washed with dichloro-
methane and recrystallized from toluene. Yield: 161.4 g (74%), m.p.
[10]
[11]
A. Becke, J. Chem. Phys. 1993, 98, 5648Ϫ5652.
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter
1988, 37, 785Ϫ789.
[12]
[13]
G. Rauhut, P. Pulay, J. Phys. Chem. 1995, 99, 3093Ϫ3100.
P. G. Wenthold, R. R. Squires, J. Am. Chem. Soc. 1994, 116,
6401Ϫ6412.
1
312Ϫ314°C. Ϫ H NMR (400 MHz, CDCl3): δ ϭ 7.13 (dd, J ϭ
[14]
[15]
High level ab initio calculations[16][17][18][19] are in good agree-
ment with experimental data (∆H° ϭ 28.5 kcal/mol, ∆H° ϭ 8.0
kcal/mol).[16]
3.1, 3.1 Hz, 8 H, CH, arom.), 6.91 (dd, J ϭ 3.1, 3.1 Hz, 8 H, CH,
arom.). Ϫ 13C NMR (100.6 MHz, CDCl3): δ ϭ 139.9 (C, arom.),
126.4 (CH, arom.), 122 (CH, arom.), 70.2 (CϪO). Ϫ MS (70 eV);
m/z (%): 385 (24), 384 [Mϩ] (76), 176 (100). Ϫ C28H16O2 (384.13):
calcd. C 95.42, H 4.58; found C 95.31, H 4.51. Ϫ IR (Ar, 10 K):
ν˜ ϭ 456 (6), 483 (8), 603 (4), 626 (19), 654 (71), 704 (75), 727 (3),
743 (5), 753 (25), 784 (100), 865 (19), 905 (11), 913 (24), 935 (31),
950 (6), 1032 (4), 1139 (5), 1160 (3), 1217 (2), 1338 (14), 1348 (9),
1364 (12), 1369 (8), 1375 (7), 1425 (5), 1448 (27), 1452 (15), 1462
(20), 1467 (6), 1952 (5), 3064 (12), 3081 (6) cmϪ1 (rel. intensity).
According to a CASSCF(8,8) calculation, the weightings of the
two configurations of the bonding and antibonding combi-
nation of the two in-plane (“radical”) π orbitals are 0.53 and
0.32. This is close to a pure diradical system in which both
configurations would have an equal contribution.[20]
E. Kraka, D. Cremer, J. Am. Chem. Soc. 1994, 116, 4929Ϫ4936.
R. Lindh, B. Joakim Persson, J. Am. Chem. Soc. 1994, 116,
4963Ϫ4969.
[16]
[17]
[18]
N. Koga, K. Morokuma, J. Am. Chem. Soc. 1991, 113,
1907Ϫ1911.
[19]
[20]
R. Lindh, M. Schuetz, Chem. Phys. Lett. 1996, 258, 409Ϫ415.
R. Lindh, T. J. Lee, A. Bernhardsson, B. Joakim Persson, G.
Karlstroem, J. Am. Chem. Soc. 1995, 117, 7186Ϫ7194.
R. L. Viavattene, F. D. Greene, L. D. Cheung, R. Majeste, L.
M. Trefonas, J. Am. Chem. Soc. 1974, 96, 4342Ϫ4343.
B. F. Duerr, Y. S. Chung, A. W. Czarnik, J. Org. Chem. 1988,
53, 2120Ϫ2122.
9,10-Diiodoanthracene (9): Diiodide 9 was synthesized according
to a procedure described by Duerr, Chung and Czarnik.[22] Ϫ IR
(Ar, 10 K): ν˜ ϭ 572 (11), 606 (12), 667 (9), 750 (60), 754 (15), 900
(8), 913 (14), 916 (100), 924 (8), 1031 (25), 1165 (10), 1167 (20),
1255 (80), 1261 (8), 1266 (10), 1301 (31), 1439 (6), 1443 (38), 1449
(12), 1525 (9), 1529 (15), 1612 (5), 3044 (2), 3056 (3), 3079 (4), 3095
(8) cmϪ1 (rel. intensity).
[21]
[22]
[23]
A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502Ϫ16513.
[97398]
Eur. J. Org. Chem. 1998, 799Ϫ803
803