10.1002/ejoc.201700788
European Journal of Organic Chemistry
COMMUNICATION
2013, 52, 11726; Angew. Chem. 2013, 125, 11942; g) A. S. K. Hashmi,
Acc. Chem. Res. 2014, 47, 864; h) Z. Huang, H. N. Lim, F. Mo, M. C
Young, G. Dong, Chem. Soc. Rev. 2015, 44, 7764; i) T. Gensch, M. N.
Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45,
Ping, D.-S. Chung, J. Bouffard, S. Lee, Chem. Soc. Rev. 2017, DOI:
10.1039/c7cs00064b; l) H. Yi, G. Zhang, H. Wang, A. Lei, Chem. Rev.
2017,10.1021/acs.chemrev.6b00620; m) J.He, M. Wasa, K. S. L.
the treatment with tetrabutylammonium fluoride (TBAF), the
related 5-exo cyclization of ortho-alkynylated benzoic acids
proceeded effectively at room temperature, leading to
benzofuran-1-ones in good to excellent yields (3a–3d).
Moreover, the alkynylation of benzoic acid can be carried out on
one-gram scale, without loss of its efficiency (eq. 1).
Preliminary mechanistic studies suggest that the reaction with
potassium 2-methylbenzoate occurred smoothly in the absence
of potassium carbonate (Scheme 4a). By replacement of
(bromoethynyl)triisopropylsilane with large amount of CH3CO2D,
the ortho-C–H bond can be deuterated to form 1a-D, although a
low yield was obtained (Scheme 4b). Interestingly, without
K2CO3, the deuteration of C–H bond cannot take place (Scheme
4c). These results indicate that base of K2CO3 may be
responsible for the deprotonation of benzoic acid in forming
benzoate salt.
Chan,
Q.
Shao,
J.-Q.
Yu,
Chem.
Rev. 2017,
DOI: 10.1021/acs.chemrev.6b00622; n) Y. Yang, J. Lan, J. You, Chem.
Rev. 2017, DOI: 10.1021/acs.chemrev.6b00567; o) Z. Dong, Z.
Ren, G.
Dong,
Chem.
Rev.
2017, DOI: 10.1021/acs.chemrev.6b00574; p) Y. Wei, P. Hu, M.
Zhang, W. Su, Chem. Rev. 2017, DOI: 10.1021/acs.chemrev.6b00561;
q)
Y.
Park,
Y.
Kim,
S.
Chang.
Chem.
Rev. 2017,
DOI: 10.1021/acs.chemrev.6b00644.
[3]
[4]
I. V. Seregin, V. Ryabova, V. Gevorgyan, J. Am. Chem. Soc. 2007,
129, 7742.
a) M. Tobisu, Y. Ano, N. Chatani, Org. Lett. 2009, 11, 3250; b) Y. Ano,
M. Tobisu, N. Chatani, J. Am. Chem. Soc. 2011, 133, 12984; c) Y. Ano,
M. Tobisu, N. Chatani, Org. Lett. 2012, 14, 354.
In summary, we have developed
a ruthenium-catalyzed
[5]
a) N. Matsuyama, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2009, 11,
4156; b) T. Kawano, N. Matsuyama, K. Hirano, T. Satoh, M. Miura, J.
Org. Chem. 2010, 75, 1764; c) M. Kitahara, K. Hirano, H. Tsurugi, T.
Satoh, M. Miura, Chem. – Eur. J. 2010, 16, 1772; d) N. Matsuyama, M.
Kitahara, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2010, 12, 2358.
M. Guan, C. Chen, J. Zhang, R. Zeng, Y. Zhao, Chem. Commun. 2015,
51, 12103.
alkynylation of aromatic and (hetero)aromatic carboxylic acids
by the cleavage of ortho-C–H bonds. This reaction tolerates
functional groups of fluoride, chloride, bromide and alkoxyl
groups, and can be carried out on one-gram scale without loss
of its efficiency. In particular, it presents a rarely example of
bis(alkynylation) of C–H bonds, allowing for the preparation of
bis(alkynylated) aromatic and (hetero)aromatic carboxylic acid
derivatives by a simple operation.
[6]
[7]
a) C. Feng, T,-P. Loh, Angew. Chem. Int. Ed. 2014, 53, 2722; Angew.
Chem. 2014, 126, 2760; b) C. Feng, D. Feng, Y. Luo, T,-P. Loh, Org.
Lett. 2014, 16, 5956; c) C. Feng, D. Feng, T,-P. Loh, Chem. Commun.
2014, 50, 9865; d) X. Yang, X. Hu, C. Feng, T,-P. Loh, Chem.
Commun. 2015, 51, 2532.
Experimental Section
[8]
[9]
J. Zhou, J. Shi, Z. Qi, X. Li, H. Xu, W. Yi, ACS. Catal. 2015, 5, 6999.
F. Xie, Z. Qi, S. Yu, X. Li, J. Am. Chem. Soc. 2014, 136, 4780.
[10] a) A. S. Dudnik, V. Gevorgyan, Angew. Chem. Int. Ed. 2010, 49, 2096;
Angew. Chem. 2010, 122, 2140; b) S. Messaoudi, J.-D. Brion, M.
Alami, Eur. J. Org. Chem. 2010, 6495; c) L. Grigorjeva, O. Daugulis,
Angew. Chem. Int. Ed. 2014, 53, 10209; Angew. Chem. 2014, 126,
10373; d) N. Sauermann, M. J. Gonzalez, L. Ackermann, Org. Lett,
2015, 17, 5316; e) J. Yi, L. Yang, C. Xia, F. Li, J. Org. Chem. 2015, 80,
6213; f) J. Zhang, H. Chen, C. Lin, Z. Liu, C. Wang, Y. Zhang, J. Am.
Chem. Soc. 2015, 137, 12990; g) G. Tang, C. Pan, F. Xie, Org. Biomol.
Chem. 2016, 14, 2898; h) Z. Ruan, S. Lackner, L. Ackermann, ACS.
Catal. 2016, 6, 4690; i) G. Cera, T. Haven, L. Ackermann, Chem.- Eur.
J. 2017, 23, 3577.
General Procedure for Ru-Catalyzed Alkynylation of Aromatic Carboxylic
Acids: mixture of
1 (0.2 mmol), [{RuCl2(p-cymene)}2] (2.5 mol %),
(bromoethynyl)triisopropylsilane (0.3 mmol), and K2CO3 (0.4 mmol), t-Amyl-OH
(1 mL) in a 15 mL glass vial was heated at 80 °C for 24 h. The reaction
mixture was cooled to room temperature and concentrated under a reduced
pressure. The resulting residue was purified by column chromatography on
silica gel to give the corresponding product 2.
Acknowledgements
[11] M. Shang, H.-L. Wang, S.-Z. Sun, H.-X. Dai, J.-Q. Yu, J. Am. Chem.
Soc. 2014, 136, 11590.
[12] Y.-J. Liu, Y.-H. Liu, X.-S. Yin, W.-J. Gu, B.-F. Shi, Chem.- Eur. J. 2015,
21, 205.
We thank the National Natural Science Foundation of China
(21202128 and 21572175) and Beijing National Laboratory for
Molecular Sciences for financial support.
[13] a) Y.-J. Liu, Y.-H. Liu, S.-Y. Yan, B.-F. Shi, Chem. Commun. 2015, 51,
6388; b) Y.-H. Liu, Y.-J. Liu, S.-Y. Yan, B.-F. Shi, Chem. Commun.
2015, 51, 11650.
Keywords: ruthenium-catalyzed • Alkynylation • Benzoic Acids •
C–H bonds • Weakly-Coordination
[14] X. Ye, C. Xu, L. Wojtas, N. G. Akhmedov, H. Chen, X. Shi, Org. Lett.
2016, 18, 2970.
[15] V. G. Landge, G. Jaiswal, E. Balaraman, Org. Lett. 2016, 18, 812.
[16]
a) Y. Ano, M. Tobisu, N. Chatani, Synlett 2012, 23, 2763; b) D. Kang,
S. Hong, Org. Lett. 2015, 17, 1938; c) R. Boobalan, P. Gandeepan, C.
H. Cheng, Org. Lett. 2016, 18, 3314; d) R. Mei, C. Zhu, L. Ackermann,
Chem. Commun. 2016, 52, 13171.
[1]
a) S. Diez-Gonzalez, Catal. Sci. Technol. 2011, 1, 166; b) A. Palisse, S.
F. Kirsch, Org. Biomol. Chem. 2012, 10, 8041; c) I. V. Alabugin, B.
Gold, J. Org. Chem. 2013, 78, 7777; d) R. Hu, J. W. Y. Lam, B.-Z.
Tang, Macromol. Chem. Phys. 2013, 214, 175; e) R. Chinchilla, C.
Najera, Chem. Rev. 2014, 114, 1783.
[17]
a) C. Chen, P. Liu, J. Tang, G. Deng, X. Zeng, Org. Lett. 2017, 10,
2474; b) R. Mei, S. Zhang, L. Ackermann, Org. Lett. 2017, 12, 3171.
[2]
a) R. Giri, B.-F. Shi, K. M. Engle, N. Maugel, J.-Q. Yu, Chem. Soc. Rev.
2009, 38, 3242; b) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem.
Rev. 2010, 110, 624; c) L. McMurray, F. O’Hara, M. Gaunt, J. Chem.
Soc. Rev. 2011, 40, 1885; d) W. R. Gutekunst, P. S. Baran, Chem.
Soc. Rev. 2011, 40, 1976; e) C. Zhang, C. Tang, N. Jiao, Chem. Soc.
Rev. 2012, 41, 3464; f) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed.
[18] a) K. Graczyk, W. Ma, L. Ackermann, Org. Lett. 2012, 14, 4110; b) K.
Padala, S. Pimparkar, P. Madasamy, M. Jeganmohan, Chem.
Commun. 2012, 48, 7140; c) Y. Yang, Y. Lin, Y. Rao, Org. Lett. 2012,
14, 2874; d) K. Padala, M. Jeganmohan, Org. Lett. 2011, 13, 6144; e)
V. S. Thirunavukkarasu, L. Ackermann, Org. Lett. 2012, 14, 6206; f) M.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.