ZHANG et Al.
ꢀꢁ ꢀ ꢀ2433
|
29. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of
normalization methods for high density oligonucleotide array data
based on variance and bias. Bioinformatics. 2003;19(2):185‐193.
30. Eisenhart C. The assumptions underlying the analysis of variance.
Biometrics. 1947;3(1):1‐21.
31. Liu XF, Wang X, Yan S, Zhang Z, Abecassis M, Hummel M. Epigenetic
control of cytomegalovirus latency and reactivation. Viruses.
2013;5(5):1325‐1345.
interleukin‐1beta triggers reactivation of latent cytomegalovirus in
immunocompetent mice. J Virol. 2006;80(18):9151‐9158.
47. Benedict CA, Angulo A, Patterson G, et al. Neutrality of the ca‐
nonical NF‐kappaB‐dependent pathway for human and murine
cytomegalovirus transcription and replication in vitro. J Virol.
2004;78(2):741‐750.
48. Reeves MB, Lehner PJ, Sissons JG, Sinclair JH. An in vitro model for
the regulation of human cytomegalovirus latency and reactivation
in dendritic cells by chromatin remodelling. J Gen Virol. 2005;86(Pt
11):2949‐2954.
49. Weis M, Kledal TN, Lin KY, et al. Cytomegalovirus infection
impairs the nitric oxide synthase pathway: role of asymmet‐
ric dimethylarginine in transplant arteriosclerosis. Circulation.
2004;109(4):500‐505.
50. Potena L, Holweg CT, Chin C, et al. Acute rejection and cardiac
allograft vascular disease is reduced by suppression of subclinical
cytomegalovirus infection. Transplantation. 2006;82(3):398‐405.
51. Reeves MB, MacAry PA, Lehner PJ, Sissons JG, Sinclair JH. Latency,
chromatin remodeling, and reactivation of human cytomegalovirus
in the dendritic cells of healthy carriers. Proc Natl Acad Sci USA.
2005;102(11):4140‐4145.
32. Liu XF, Yan S, Abecassis M, Hummel M. Establishment of mu‐
rine cytomegalovirus latency in vivo is associated with changes
in histone modifications and recruitment of transcriptional
repressors to the major immediate‐early promoter.
2008;82(21):10922‐10931.
J Virol.
33. Liu XF, Yan S, Abecassis M, Hummel M. Biphasic recruitment of
transcriptional repressors to the murine cytomegalovirus major
immediate‐early promoter during the course of infection in vivo. J
Virol. 2010;84(7):3631‐3643.
34. Shrum S, MacMillan‐Crow LA, Parajuli N. Cold storage exacerbates
renal and mitochondrial dysfunction following transplantation. J
35. Tran DT, Esckilsen S, Mulligan J, Mehrotra S, Atkinson C, Nadig SN.
Impact of mitochondrial permeability on endothelial cell immuno‐
genicity in transplantation. Transplantation. 2018;102(6):935‐944.
36. Zepeda‐Orozco D, Kong M, Scheuermann RH. Molecular pro‐
file of mitochondrial dysfunction in kidney transplant biop‐
sies is associated with poor allograft outcome. Transplant Proc.
2015;47(6):1675‐1682.
52. Gan X, Wang H, Yu Y, et al. Epigenetically repressing human cyto‐
megalovirus lytic infection and reactivation from latency in THP‐1
model by targeting H3K9 and H3K27 histone demethylases. PLoS
ONE. 2017;12(4):e0175390.
53. Szenker E, Ray‐Gallet D, Almouzni G. The double face of the histone
variant H3.3. Cell Res. 2011;21(3):421‐434.
37. Nashan B, Luck R, Kliem V, Brunkhorst R, Schlitt HJ, Klempnauer
J. CMV in kidney transplantation: a single center experience over
22 years. Clin Transpl. 1999;13:181‐188.
38. Chakrabarti S, Mackinnon S, Chopra R, et al. High incidence of
cytomegalovirus infection after nonmyeloablative stem cell trans‐
plantation: potential role of Campath‐1H in delaying immune recon‐
stitution. Blood. 2002;99(12):4357‐4363.
39. Lebranchu Y, Bridoux F, Buchler M, et al. Immunoprophylaxis with
basiliximab compared with antithymocyte globulin in renal trans‐
plant patients receiving MMF‐containing triple therapy. Am J
Transplant. 2002;2(1):48‐56.
40. Hummel M, Kurian SM, Lin S, et al. Intragraft TNF receptor signaling
contributes to activation of innate and adaptive immunity in a renal
allograft model. Transplantation. 2009;87(2):178‐188.
54. Fu H, Maunakea AK, Martin MM, et al. Methylation of histone
H3 on lysine 79 associates with a group of replication origins
and helps limit DNA replication once per cell cycle. PLoS Genet.
2013;9(6):e1003542.
55. Mar D, Gharib SA, Zager RA, Johnson A, Denisenko O, Bomsztyk
K. Heterogeneity of epigenetic changes at ischemia/reperfusion‐
and endotoxin‐induced acute kidney injury genes. Kidney Int.
2015;88(4):734‐744.
56. Tang J, Zhuang S. Epigenetics in acute kidney injury. Curr Opin
Nephrol Hypertens. 2015;24(4):351‐358.
57. Bomsztyk K, Denisenko O. Epigenetic alterations in acute kidney
injury. Semin Nephrol. 2013;33(4):327‐340.
58. Guo C, Dong G, Liang X, Dong Z. Epigenetic regulation in AKI and
kidney repair: mechanisms and therapeutic implications. Nat Rev
Nephrol. 2019;15:220‐239.
41. Kim SJ, Varghese TK, Zhang Z, et al. Renal ischemia/reperfusion
injury activates the enhancer domain of the human cytomega‐
lovirus major immediate early promoter. Am J Transplant. 2005;
5(7):1606‐1613.
SUPPORTING INFORMATION
42. Grzimek NK, Dreis D, Schmalz S, Reddehase MJ. Random, asyn‐
chronous, and asymmetric transcriptional activity of en‐
hancer‐flanking major immediate‐early genes ie1/3 and ie2
during murine cytomegalovirus latency in the lungs. J Virol.
2001;75(6):2692‐2705.
Additional supporting information may be found online in the
Supporting Information section at the end of the article.
43. Reddehase MJ, Simon CO, Seckert CK, Lemmermann N, Grzimek
NK. Murine model of cytomegalovirus latency and reactivation.
Curr Top Microbiol Immunol. 2008;325:315‐331.
44. Reeves M, Sinclair J. Aspects of human cytomegalovirus latency
and reactivation. Curr Top Microbiol Immunol. 2008;325:297‐313.
45. Simon CO, Seckert CK, Dreis D, Reddehase MJ, Grzimek NK.
Role for tumor necrosis factor alpha in murine cytomegalovi‐
rus transcriptional reactivation in latently infected lungs. J Virol.
2005;79(1):326‐340.
How to cite this article: Zhang Z, Qiu L, Yan S, et al. A
clinically relevant murine model unmasks a “two‐hit”
mechanism for reactivation and dissemination of
cytomegalovirus after kidney transplant. Am J Transplant.
46. Cook CH, Trgovcich J, Zimmerman PD, Zhang Y, Sedmak
DD. Lipopolysaccharide, tumor necrosis factor alpha, or