Table 1. C-H Bond Activation of Pyridine 1 Employing Aryl
Chloride 2aa
Table 2. Scope of Directed C-H Bond Activation of Pyridine
1
a
a
Reaction conditions: 1 (1.0 mmol), 2a (2.2 mmol), K2CO3 (3.0 mmol),
[
2
2
RuCl2(p-cymene)]2 (2.5 mol %), ligand (10 mol %), NMP (2 mL); Ar )
b
c
,6-(i-Pr)2C6H3. Determined by GC-analysis. NMP (2 mL), H2O (1 mL),
d
0 h. 24 h.
bond cleavage, gives rise to the catalytically active species
in a ruthenium-catalyzed arylation of pyridine with iodo-
9
benzene. Anionic P-bonded ligands are also obtained by
10
reaction of air-stable phosphine oxides with transition-metal
complexes.11 Consequently, such preligands were probed
in ruthenium-catalyzed arylation reactions through C-H-
bond activation using aryl chlorides.
12
(6) Selected examples: (a) Okazawa, T.; Satoh, T.; Miura, M.; Nomura,
M. J. Am. Chem. Soc. 2002, 124, 5286-5287. (b) Mori, A.; Sekiguchi, A.;
Masui, K.; Shimada, T.; Horie, M.; Osakada, K.; Kawamoto, M.; Ikeda, T.
J. Am. Chem. Soc. 2003, 125, 1700-1701. (c) Gallagher, W.; Maleczka,
R. E. J. Org. Chem. 2003, 68, 6775-6779. (d) Sezen, B.; Sames, D. J.
Am. Chem. Soc. 2003, 125, 5274-5275. (e) Sezen, B.; Sames, D. Org.
Lett. 2003, 5, 3607-3610. (f) Lewis, J. C.; Wiedemann, S. H.; Bergman,
R. G.; Ellman, J. A. Org. Lett. 2004, 6, 35-38. (g) Park, C.-H.; Ryabova,
V.; Seregin, I. V.; Sromek, A. W.; Gevorgyn, V. Org. Lett. 2004, 6, 1159-
a
Reaction conditions: 1 (1.0 mmol), 2 (2.2 mmol), K2CO3 (3.0 mmol),
[
RuCl2(p-cymene)]2 (2.5 mol %), 9 (10 mol %), NMP (2 mL), 120 °C.
On the outset of the studies a range of different ligands
were tested in the ruthenium-catalyzed directed arylation of
-phenylpyridine (1) using chlorobenzene (2a) (Table 1).
While N-heterocyclic carbene precursor 4
well as phosphine oxides 5, 6, 7, and 8 (entries 2-5)
enabled diarylation, the adamantyl-derivative 9 gave more
1
162. (h) Sezen, B.; Sames, D. J. Am. Chem. Soc. 2005, 127, 5284-5285;
and references therein.
7) Kakiuchi, F.; Chatani, N. In Ruthenium in Organic Synthesis;
(
5a
2
Murahashi; S.-I., Ed.; Wiley-VCH: Weinheim 2004; pp 219-255.
1
3,14
(entry 1) as
(
(
8) For a single low-yielding example, see ref 5b.
9) Godula, K.; Sezen, B.; Sames, D. J. Am. Chem. Soc. 2005, 127,
1
5
12
16
3
648-3649.
10) Dubrovina, N. V.; B o¨ rner, A. Angew. Chem., Int. Ed. 2004, 43,
883-5886.
11) (a) Beaulieu, W. B.; Rauchfuss, T. B.; Roundhill, D. M. Inorg.
Chem. 1975, 14, 1732-1734. (b) Li, G. Y. J. Org. Chem. 2002, 67, 3643-
650. (c) For the synthesis of a related ruthenium complex, see: Chan, E.
(
5
(
(13) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290-1309.
(14) For studies on the use of in-situ generated carbene complexes from
this laboratory, see: (a) Ackermann, L.; Kaspar, L. T.; Gschrei, C. J. Chem.
Commun. 2004, 2824-2825. (b) Ackermann, L. Org. Lett. 2005, 7, 439-
442.
(15) Enders, D.; Tedeschi, L.; Bats, J. W. Angew. Chem., Int. Ed. 2000,
39, 4605-4607.
3
Y. Y.; Zhang, Q.-F.; Sau, Y.-K.; Lo, S. M. F.; Sung, H. H. Y.; Williams,
I. D.; Haynes, R. K.; Leung, W.-H. Inorg. Chem. 2004, 43, 4921-4926.
(12) For the use of diaminophosphine oxides in Suzuki-reactions, see:
Ackermann, L.; Born, R. Angew. Chem., Int. Ed. 2005, 44, 2444-2447.
3124
Org. Lett., Vol. 7, No. 14, 2005