10.1002/anie.202101328
Angewandte Chemie International Edition
RESEARCH ARTICLE
[4]
[5]
a) W. Cheng, M. Wang, X. Tian, X. Zhang, Eur. J. Med.
Chem. 2017, 126, 476-490; b) R. Porta, R. Borea, A.
Coelho, S. Khan, A. Araújo, P. Reclusa, T. Franchina, N.
Van Der Steen, P. Van Dam, J. Ferri, R. Sirera, A. Naing,
D. Hong, C. Rolfo, Crit. Rev. Oncol. Hematol. 2017, 113,
256-267; c) G. Marseglia, A. Lodola, M. Mor, R. Castelli,
Expert Opin. Ther. Pat. 2019, 29, 965-977.
a) P. A. Renhowe, S. Pecchi, C. M. Shafer, T. D.
Machajewski, E. M. Jazan, C. Taylor, W. Antonios-McCrea,
C. M. McBride, K. Frazier, M. Wiesmann, G. R. Lapointe, P.
H. Feucht, R. L. Warne, C. C. Heise, D. Menezes, K.
Aardalen, H. Ye, M. He, V. Le, J. Vora, J. M. Jansen, M. E.
Wernette-Hammond, A. L. Harris, J. Med. Chem. 2009, 52,
278-292; b) F. André, T. Bachelot, M. Campone, F. Dalenc,
J. M. Perez-Garcia, S. A. Hurvitz, N. Turner, H. Rugo, J. W.
Smith, S. Deudon, M. Shi, Y. Zhang, A. Kay, D. G. Porta, A.
Yovine, J. Baselga, Clin. Cancer Res. 2013, 19, 3693-3702.
a) G. J. Roth, A. Heckel, F. Colbatzky, S. Handschuh, J. r.
Kley, T. Lehmann-Lintz, R. Lotz, U. Tontsch-Grunt, R.
Walter, F. Hilberg, J. Med. Chem. 2009, 52, 4466-4480; b)
G. J. Roth, R. Binder, F. Colbatzky, C. Dallinger, R.
Schlenker-Herceg, F. Hilberg, S.-L. Wollin, R. Kaiser, J.
Med. Chem. 2015, 58, 3, 1053–1063.
a) W.-S. Huang, C. A. Metcalf, R. Sundaramoorthi, Y. Wang,
D. Zou, R. M. Thomas, X. Zhu, L. Cai, D. Wen, S. Liu, J.
Romero, J. Qi, I. Chen, G. Banda, S. P. Lentini, S. Das, Q.
Xu, J. Keats, F. Wang, S. Wardwell, Y. Ning, J. T.
Snodgrass, M. I. Broudy, K. Russian, T. Zhou, L.
Commodore, N. I. Narasimhan, Q. K. Mohemmad, J.
Iuliucci, V. M. Rivera, D. C. Dalgarno, T. K. Sawyer, T.
Clackson, W. C. Shakespeare, J. Med. Chem. 2010, 53,
4701-4719; b) J. M. Gozgit, M. J. Wong, L. Moran, S.
Wardwell, Q. K. Mohemmad, N. I. Narasimhan, W. C.
Shakespeare, F. Wang, T. Clackson, V. M. Rivera, Mol.
Cancer Ther. 2012, 11, 690-699.
We demonstrated that DGY-09-192 has an acceptable PK profile
and induced degradation of FGFR2 fusion protein in vivo.
However, as a prototype molecule, DGY-09-192 has some
limitations that will need to be overcome. For example, DGY-09-
192 does not improve upon the FGFR parental inhibitor BGJ398
with respect to antiproliferative activity and is unlikely to overcome
BGJ398-induced point mutation on FGFR proteins that confer
resistance (Table S3). In addition, DGY-09-192 still potently
inhibits all FGFR isoforms, so its antiproliferative activity cannot
be attributed solely to degradation alone. Further optimization will
be necessary to reduce FGFR binding, enhance oral
bioavailability, improve selectivity for a particular FGFR, decrease
off-target binding to PDE6D, and increase potency against drug
resistant mutants. Additionally, we envision that degraders that
exhibit selectivity for oncogenic mutants or fusions relative to wild-
type FGFR to achieve enhanced therapeutic index, could also be
developed with further optimization.
[6]
[7]
Acknowledgements
We thank Milka Kostic, Eric Wang and Inchul You for editing the
manuscript. We thank Zhen-Yu Jim Sun for his assistance on 1H
NMR and 13C NMR data collection. We acknowledge funding from
NIH 5 R01 CA218278-02 (NSG and ESF), Pediatric Low-Grade
Astrocytoma Fund at the Pediatric Brain Tumor Foundation (NSG
and ESF), SPORE NIH P50 CA127003 (NSG and NB), V
Foundation for Cancer Research (NSG, NB and TZ) and CCF
award, supported by
Cholangiocarcinoma Foundation (TZ).
a
Research Grant from the
[8]
[9]
F. Hilberg, G. J. Roth, M. Krssak, S. Kautschitsch, W.
Sommergruber, U. Tontsch-Grunt, P. Garin-Chesa, G.
Bader, A. Zoephel, J. Quant, A. Heckel, W. J. Rettig,
Cancer Res. 2008, 68, 4774-4782.
a) W. Zhou, W. Hur, U. McDermott, A. Dutt, W. Xian, S. B.
Ficarro, J. Zhang, S. V. Sharma, J. Brugge, M. Meyerson,
J. Settleman, N. S. Gray, Chem. Bio. 2010, 17, 285-295; b)
L. Tan, J. Wang, J. Tanizaki, Z. Huang, A. R. Aref, M. Rusan,
S.-J. Zhu, Y. Zhang, D. Ercan, R. G. Liao, M. Capelletti, W.
Zhou, W. Hur, N. Kim, T. Sim, S. Gaudet, D. A. Barbie, J. J.
Yeh, C. H. Yun, P. S. Hammerman, M. Mohammadi, P. A
Jänne, N. S. Gray, Proc. Natl. Acad. Sci. 2014, 111, E4869-
E4877.
K. A. Brameld, T. D. Owens, E. Verner, E. Venetsanakos,
J. M. Bradshaw, V. T. Phan, D. Tam, K. Leung, J. Shu, J.
LaStant, D. G. Loughhead, T. Ton, D. E. Karr, M. E.
Gerritsen, D. M. Goldstein, J. O. Funk, J. Med. Chem. 2017,
60, 15, 6516–6527.
X. Lin, Y. Yosaatmadja, M. Kalyukina, M. J. Middleditch, Z.
Zhang, X. Lu, K. Ding, A. V. Patterson, J. B. Smaill, C. J.
Squire, ACS Med. Chem. Lett. 2019, 10, 1180-1186.
M. Kalyukina, Y. Yosaatmadja, M. J. Middleditch, A. V.
Patterson, J. B. Smaill, C. J. Squire, ChemMedChem 2019,
14, 494-500.
Conflict of interest
G.D., N.J.H., T.Z., J.J., and N.S.G. are inventors on FGFR2
degrader patent. E.S.F. is a founder, science advisory board
member, and equity holder in Civetta, Jengu (board member), and
Neomorph, an equity holder in C4, and a consultant to Sanofi,
Novartis, Deerfield, and EcoR1. The Fischer lab receives or has
received research funding from Novartis, Astellas, and Ajax.
N.S.G. is a Scientific Founder, member of the Scientific Advisory
Board (SAB) and equity holder in C4 Therapeutics, Syros, Soltego
(board member), B2S, Allorion, Larkspur (board member), Jengu
and Inception. The Gray lab receives or has received research
funding from Novartis, Takeda, Astellas, Taiho, Janssen, Kinogen,
Voroni, Arbella, Deerfield, and Sanofi. N.B. has received research
funding from Taiho. J.C. is a consultant to Soltego, Jengu, Allorion,
and equity holder for Soltego, Allorion, M3 bioinformatics &
technology Inc. The other authors declare no competing interests.
[10]
[11]
[12]
[13]
[14]
P. R. Gavine, L. Mooney, E. Kilgour, A. P. Thomas, K. Al-
Kadhimi, S. Beck, C. Rooney, T. Coleman, D. Baker, M. J.
Mellor, A. N. Brooks, T. Klinowska, Cancer Res. 2012, 72,
2045-2056.
Keywords: protein degradation • FGFR2 • FGFR1• degrader •
a) V. Guagnano, P. Furet, C. Spanka, V. Bordas, M. Le
Douget, C. Stamm, J. Brueggen, M. R. Jensen, C. Schnell,
H. Schmid, M. Wartmann, J. Berghausen, P. Drueckes, A.
Zimmerlin, D. Bussiere, J. Murray, D. G. Porta, J. Med.
Chem. 2011, 54, 7066-7083; b) S. K. Pal, J. E. Rosenberg,
J. H. Hoffman-Censits, R. Berger, D. I. Quinn, M. D. Galsky,
J. Wolf, C. Dittrich, B. Keam, J.-P. Delord, J. H. M.
Schellens, G. Gravis, J. Medioni, P. Maroto, V. Sriuranpong,
C. Charoentum, H. A. Burris, V. Grünwald, D. Petrylak, U.
Vaishampayan, E. Gez, U. De Giorgi, J.-L. Lee, J.
Voortman, S. Gupta, S. Sharma, A. Mortazavi, D. J. Vaughn,
cholangiocarcinoma
[1]
[2]
A. Beenken, M. Mohammadi, Nat. Rev. Drug Discov 2009,
8, 235-253.
a) Y. K. Chae, K. Ranganath, P. S. Hammerman, C.
Vaklavas, N. Mohindra, A. Kalyan, M. Matsangou, R. Costa,
B. Carneiro, V. M. Villaflor, M. Cristofanilli, F. J. Giles,
Oncotarget 2017, 8, 16052; b) B. Farrell, A. L. Breeze,
Biochem. Soc. Trans. 2018, 46, 1753-1770.
[3]
M. Katoh, Nat. Rev. Clin. Oncol. 2019, 16, 105-122.
6
This article is protected by copyright. All rights reserved.