Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Angewandte
Chemie
S. E. Blondelle, J. R. Appel, C. T. Dooley, J. H. Cuervo, Nature
1991, 354, 84 – 86.
[3] a) B. A. Bunin, J. A. Ellman, J. Am. Chem. Soc. 1992, 114,
10997 – 10998; b) L. A. Thompson, J. A. Ellman, Chem. Rev.
1996, 96, 555 – 600; c) H. E. Blackwell, L. Perez, R. A. Sta-
venger, J. A. Tallarico, E. Cope Eatough, M. A. Foley, S. L.
Schreiber, Chem. Biol. 2001, 8, 1167 – 1182; d) P. A. Clemons,
A. N. Koehler, B. K. Wagner, T. G. Sprigings, D. R. Spring, R. W.
King, S. L. Schreiber, M. A. Foley, Chem. Biol. 2001, 8, 1183 –
1195; e) D. G. Hall, S. Manku, F. Wang, J. Comb. Chem. 2001, 3,
125 – 150; f) T. U. Mayer, Trends Cell Biol. 2003, 13, 270 – 277;
g) S. M. Khersonsky, Y.-T. Chang, Comb. Chem. High Through-
put Screening 2004, 7, 645 – 652; h) L. Burdine, T. Kodadek,
Chem. Biol. 2004, 11, 593 – 597; i) D. R. Spring, Chem. Soc. Rev.
2005, 34, 472 – 482.
[4] M. D. Burke, S. L. Schreiber, Angew. Chem. 2004, 116, 48 – 60;
Angew. Chem. Int. Ed. 2004, 43, 46 – 58.
[5] a) E. M. Gordon, M. A. Gallop, D. V. Patel, Acc. Chem. Res.
1996, 29, 144 – 154; b) M. A. Marx, A.-L. Grillot, C. T. Louer,
K. A. Beaver, P. A. Bartlett, J. Am. Chem. Soc. 1997, 119, 6153 –
6167; c) M. R. Spaller, M. T. Burger, M. Fardis, P. A. Bartlett,
Curr. Opin. Chem. Biol. 1997, 1, 47 – 53.
[6] A. Nefzi, J. M. Ostresh, J. Yu, R. A. Houghten, J. Org. Chem.
2004, 69, 3603 – 3609.
[7] a) M. D. Burke, E. M. Berger, S. L. Schreiber, Science 2003, 302,
613 – 618; b) H. Oguri, S. L. Schreiber, Org. Lett. 2005, 7, 47 – 50.
[8] a) S. Shang, D. S. Tan, Curr. Opin. Chem. Biol. 2005, 9, 248 – 258;
b) S. Fergus, A. Bender, D. R. Spring, Curr. Opin. Chem. Biol.
2005, 9, 304 – 309; c) R. Breinbauer, I. R. Vetter, H. Waldmann,
Angew. Chem. 2002, 114, 3002 – 3015; Angew. Chem. Int. Ed.
2002, 41, 2878 – 2890.
[9] W. H. B. Sauer, M. K. Schwarz, J. Chem. Inf. Comput. Sci. 2003,
43, 987 – 1003.
[10] Y.-k. Kim, M. A. Arai, T. Arai, J. O. Lamenzo, E. F. Dean III, N.
Patterson, P. A. Clemons, S. L. Schreiber, J. Am. Chem. Soc.
2004, 126, 14740 – 14745.
Scheme 3. Conversion of ester (R)-5 into a varietyof amides. Conver-
sions based on LCMS.
saponified with potassium trimethylsilanolate (TMSOK) and
the product employed in an amide coupling reaction with a
variety of primary and secondary amines. Although the solid-
phase acid intermediate is quite hindered, we were able to use
excess reagents to achieve high yields for many primary and
secondary amines. Aryl and heteroaryl substrates were less
effective. This transformation yields compounds that comple-
ment the structural diversity of lactams 7a–d.
In conclusion, we have demonstrated that a linear
synthetic sequence can incorporate a single functional-group
manipulation to produce four different core structures. We
have applied this sequence to the synthesis of a pilot library of
529[22] complexcompounds that result from both enantiose-
lective pathways that will be employed in a series of biological
screens. Preliminary screening experiments indicate that the
compounds in this library modulate the cellular process of
both yeast and human cancer (HeLa) cells.[23] A full account
of our synthetic studies and screening experiments will be
disclosed shortly.
[11] Use of semiempirical calculations (PM5) to generate an energy
map for rotation about this bond indicates that 1808 rotation
requires at least 10 kcalmolÀ1 (see the Supporting Information).
[12] 2-Aryl oxazolines analogous to 5 occur as siderophore, anti-
tumor natural products, and synthetic inhibitors of lipid-1
biosynthesis; see: a) T. Peterson, J. B. Neilands, Tetrahedron
Lett. 1979, 4805 – 4808; b) M. Tsukamoto, J. Antibiot. 1997, 50,
815 – 821; and c) M. C. Pirrung, L. N. Tumey, A. L. McClerren,
C. R. H. Raetz, J. Am. Chem. Soc. 2003, 125, 1575 – 1586;
quinolones related to 7a and 7b exhibit broad bioactivity and
also occur naturally, see: d) I. Jarak, M. Kralj, L. Suman, G.
Pavlovic, J. Dogan, I. Piantanida, M. Zinic, K. Pavelic, G.
Karminski-Zamola, J. Med. Chem. 2005, 48, 2346 – 2360; e) B.
Baruah, K. Dasu, B. Vaitilingam, A. Vanguri, S. R. Casturi, K. R.
Yeleswarapu, Bioorg. Med. Chem. Lett. 2004, 14, 445 – 448; f) I.-
S. Chen, S.-J. Wu, I.-L. Tsai, T.-S. Wu, J. M. Pezzuto, M. C. Lu, H.
Chai, N. Suh, C.-M. Teng, J. Nat. Prod. 1994, 57, 1206 – 1211; 2-
benzazepine-3-ones related to 7c and 7d act as m-opioid
antagonists, see: g) I. Van den Eynde, G. Laus, P. W. Schiller, P.
Kosson, N. N. Chung, A. W. Lipkowski, D. Tourwe, J. Med.
Chem. 2005, 48, 3644 – 3648.
[13] For a recent example of a natural-product-like library, see: a) Z.
Gan, P. T. Reddy, S. Quevillon, S. Couve-Bonnaire, P. Arya,
Angew. Chem. 2005, 117, 1390 – 1392; Angew. Chem. Int. Ed.
2005, 44, 1366 – 1368; for a review, see: b) A. Reayi, P. Arya,
Curr. Opin. Chem. Biol. 2005, 9, 240 – 247.
[14] The diisopropylsilyl linker used for this study was developed by
Schreiber and co-workers: a) J. A. Tallarico, K. M. Depew, H. E.
Pelish, N. J. Westwood, C. W. Lindsley, M. D. Shair, S. L.
Schreiber, M. A. Foley, J. Comb. Chem. 2001, 3, 312 – 318; two
variants of this linker were recently described which feature
Received: September 20, 2005
Published online: February 15, 2006
Keywords: asymmetric synthesis · combinatorial chemistry ·
.
lactams · synthetic methods
[1] a) D. S. Tan, Nat. Chem. Biol. 2005, 1, 74 – 84; b) B. R. Stockwell,
Nature 2004, 432, 846 – 854; c) C. M. Dobson, Nature 2004, 432,
824 – 828; d) R. L. Strausberg, S. L. Schreiber, Science 2003, 300,
294 – 295; e) K. S. Lam, M. Lebl, V. Krchnak, Chem. Rev. 1997,
97, 411 – 448.
[2] a) A. Furka, F. Sebestyen, M. Asgedom, G. Dibo, Int. J. Pept.
Protein Res. 1991, 37, 487 – 493; b) R. A. Houghten, C. Pinilla,
Angew. Chem. Int. Ed. 2006, 45, 1722 –1726
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1725