Journal of the American Chemical Society
Communication
−1
ASSOCIATED CONTENT
Supporting Information
■
*
S
45
method of calculating torsional entropy. A biphenyl model
was used to plot potential energy versus dihedral angle (Figure
1
−1
Experimental procedures, compound characterization
spectrometry, and entropy calculations (PDF)
penalties, the discrepancy between them impacts their
usefulness for providing a deeper understanding of the
1
1,41,42,46−48
recognition phenomenon
and for their use in the
49
accurate computer-aided design of receptors.
AUTHOR INFORMATION
*
Experimental determination of thermodynamic signatures
requires accurate estimates of all equilibrium constants. For
this reason, we selected a simpler system derived from
perchlorate, which has only two coupled equilibria rather
than the four seen with bisulfate. Entropy losses upon
macrocycle dimerization with ClO4 approximate those with
bisulfate. The equilibria involved with the macrocycles (MC; as
11
2
7
ORCID
11
Notes
The authors declare no competing financial interest.
−
either cyanodimer or cyanostar) are as follows:
MC + ClO − ⇌ MC·ClO4− ΔG1:1
ACKNOWLEDGMENTS
4
■
We acknowledge support from the NSF (DMR 1533988).
2
MC + ClO − ⇌ MC ·ClO4
−
ΔG2:1
4
2
REFERENCES
The parent cyanostar forms a 2:1 perchlorate complex with
■
16
large cooperativity and this complex is stable even with excess
anion. With cyanodimer, however, after the 2:1 complex forms
complex (∼5 equiv, Figure S11) indicative of a reduction in
cooperativity. This behavior matches bisulfate and is consistent
with the 2:1 perchlorate complex serving as a reasonable
approximation of the 2:2 bisulfate complex.
The binding thermodynamics were established from van’t
Hoff plots (Figure 4c, 303−350 K). The overall stability of
cyanostar’s 2:1 complex with perchlorate differs very little with
(1) Lovell, S. C.; Word, J. M.; Richardson, J. S.; Richardson, D. C.
Proteins: Struct., Funct., Genet. 2000, 40, 389−408.
2) Boyer, P. D. Nature 1999, 402, 247.
(
(
3) Kelly, T. R.; Bowyer, M. C.; Bhaskar, K. V.; Bebbington, D.;
Garcia, A.; Lang, F.; Kim, M. H.; Jette, M. P. J. Am. Chem. Soc. 1994,
16, 3657−3658.
4) Koumura, N.; Zijlstra, R. W.; van Delden, R. A.; Harada, N.;
Feringa, B. L. Nature 1999, 401, 152−155.
5) Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963−1981.
(6) Berl, V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn, J. M. Nature
1
(
(
2000, 407, 720−723.
−
1
temperature (ΔG = 76.0 ± 0.3 kJ mol ; 303−350 K)
(7) Petitjean, A.; Khoury, R. G.; Kyritsakas, N.; Lehn, J.-M. J. Am.
Chem. Soc. 2004, 126, 6637−6647.
2
:1
generating a small entropic effect on binding (ΔS = 12 ± 16 J
mol K ). The enthalpy of binding for cyanostar is ΔH
2
:1
−1
−1
(8) Rebek, J.; Trend, J. E.; Wattley, R. V.; Chakravorti, S. J. Am.
Chem. Soc. 1979, 101, 4333−4337.
=
2:1
−1
−
72 ± 5 kJ mol .
(
1
(
9) Chang, C.-E.; Gilson, M. K. J. Am. Chem. Soc. 2004, 126, 13156−
Consistent with our idea, cyanodimer has a large entropic
3164.
10) Todd, E. M.; Quinn, J. R.; Park, T.; Zimmerman, S. C. Isr. J.
Chem. 2005, 45, 381−389.
11) Fatila, E. M.; Twum, E. B.; Sengupta, A.; Pink, M.; Karty, J. A.;
−1
−1
penalty to 2:1 binding of −115 ± 18 J mol K . This value
−
1
−1
matches the torsional entropy (−123 J mol K ). Thus,
cyanodimer’s cooperativity is reduced by entropic costs of
(
restricting rotations of 10 biphenyl units and impeding their
Raghavachari, K.; Flood, A. H. Angew. Chem., Int. Ed. 2016, 55,
14057−14062.
−
±
40° rocking (Figure 4b). Finally, the enthalpy of ClO
4
1
−
binding with cyanodimer is ΔH = −98 ± 4 kJ mol
(12) Zhao, W.; Qiao, B.; Chen, C.-H.; Flood, A. H. Angew. Chem., Int.
Ed. 2017, 56, 13083−13087.
2
:1
We expect entropy penalties of forming a 2:1 complex with
ClO4 matches formation of a 2:2 complex with bisulfate; both
−
(13) Fatila, E. M.; Twum, E. B.; Karty, J. A.; Flood, A. H. Chem. - Eur.
J. 2017, 23, 10652−10662.
reactions freeze ten biphenyl rotamers. For the formation of the
:2 complex, however, one additional macrocycle is attached to
(
3
the 2:2 complex by freezing out an additional five biphenyl
rotamers. Thus, the entropy penalty for the 3:2 complex is
expected to be 50% greater that of the 2:2 complex. This
entropy cost likely works together with the designed steric
effects. Thus, a more accurate formulation of the design
principle employed herein is of steric destabilization and
enhanced entropic destabilization of the 3:2 species relative to
the entropic destabilization of the 2:2 complexes that form
around a bisulfate dimer.
In conclusion, a new strategy for negative allostery involves
guest-selected rotamers capable of stabilizing π-stacked dimers
over multimers to select 2:2 bisulfate complexes with high
fidelity. The design mechanism produces lower overall stability
of π-stacked dimers in the 2:2 complex originating from losses
in torsional entropy.
(
15) Grave, C.; Schlu
098.
(16) Yuan, L.; Feng, W.; Yamato, K.; Sanford, A. R.; Xu, D.; Guo, H.;
̈
ter, A. D. Eur. J. Org. Chem. 2002, 2002, 3075−
3
Gong, B. J. Am. Chem. Soc. 2004, 126, 11120−11121.
(17) Guieu, S.; Crane, A. K.; MacLachlan, M. J. Chem. Commun.
2
(
011, 47, 1169−1171.
18) Qin, B.; Ren, C.; Ye, R.; Sun, C.; Chiad, K.; Chen, X.; Li, Z.;
Xue, F.; Su, H.; Chass, G. A.; Zeng, H. J. Am. Chem. Soc. 2010, 132,
564−9566.
19) Lee, S.; Hirsch, B. E.; Liu, Y.; Dobscha, J. R.; Burke, D. W.; Tait,
S. L.; Flood, A. H. Chem. - Eur. J. 2016, 22, 560−569.
9
(
(
20) Hui, J. K. H.; MacLachlan, M. J. Chem. Commun. 2006, 2480−
2
482.
(21) Venkataraman, D.; Lee, S.; Zhang, J.; Moore, J. S. Nature 1994,
371, 591.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX