Journal of the American Chemical Society
COMMUNICATION
Scheme 2. SAM Bound to the [4Fe-4S] Cluster of RlmN or
Cfr Is Activated toward Two Distinct Reactivities
(2) Markham, G. D. S-Adenosylmethionine. In Encyclopedia of Life
Sciences; John Wiley & Sons, Inc.: 2010.
(3) Silverman, R. B. Academic Press: New York, 2002.
(4) Hegazi, M. F.; Borchardt, R. T.; Schowen, R. L. J. Am. Chem. Soc.
1979, 101, 4359–4365.
(5) Iwig, D. F.; Grippe, A. T.; McIntyre, T. A.; Booker, S. J.
Biochemistry 2004, 43, 13510–13524.
(6) Woodard, R. W.; Tsai, M.-D.; Floss, H. G.; Crooks, P. A.;
Coward, J. K. J. Biol. Chem. 1980, 255, 9124–9127.
(7) Grove, T. L.; Benner, J. S.; Radle, M. I.; Ahlum, J. H.; Landgraf,
B. J.; Krebs, C.; Booker, S. J. Science 2011, 332, 604–607.
(8) Yan, F.; Fujimori, D. G. Proc. Natl. Acad. Sci. U.S.A. 2011,
108, 3930–3934.
(9) Yan, F.; LaMarre, J. M.; R€ohrich, R.; Wiesner, J.; Jomaa, H.;
Mankin, A. S.; Galoníc Fujimori, D. J. Am. Chem. Soc. 2010,
132, 3953–3964.
(10) Ban, N.; Freborn, B.; Nissen, P.; Penczek, P.; Grassucci, R. A.;
Sweet, R.; Frank, J.; Moore, P. B.; Steitz, T. A. Cell 1998, 93, 1105–1115.
(11) Harms, J.; Schluenzen, F.; Zarivach, R.; Bashan, A.; Gat, S.;
Agmon, I.; Bartels, H.; Francheschi, F.; Yonath, A. Cell 2001,
107, 679–688.
(12) Schuwirth, B. S.; Borovinskaya, M. A.; Hau, C. W.; Zhang, W.;
Vila-Sanjurjo, A.; Hoton, J. M.; Cate, J. H. D. Science 2005, 310, 827–834.
(13) Selmer, M.; Dunham, C. M.; Murphy, F. V., IV; Weixlbaumer,
A.; Petry, S.; Kelley, A. C.; Weir, J. R.; Ramakrishnan, V. Science 2006,
313, 1935–1942.
(14) The_UniProt_Consortium, The Universal Protein Resource
( UniProt). Nucleic Acids Res. 2007, 35 (Suppl. 1), D193ꢀD197.
(15) Toh, S.-M.; Xiong, L.; Bae, T.; Mankin, A. S. RNA 2008,
14, 98–106.
(16) Giessing, A. M. B.; Jensen, S. S.; Rasmussen, A.; Hansen, L. H.;
Gondela, A.; Long, K. S.; Vester, B.; Kirpekar, F. RNA 2009, 15, 327–336.
(17) Smith, L. K.; Mankin, A. S. Antimicrob. Agents Chemother. 2008,
52, 1703–1712.
(18) Booker, S. J. Curr. Opin. Chem. Biol. 2009, 13, 58–73.
(19) Frey, P. A.; Booker, S. J. Adv. Protein Chem. 2001, 58, 1–45.
(20) Frey, P. A.; Hegeman, A. D.; Ruzicka, F. J. Crit. Rev. Biochem.
Mol. Biol. 2008, 43, 63–88.
(21) Sofia, H. J.; Chen, G.; Hetzler, B. G.; Reyes-Spindola, J. F.;
Miller, N. E. Nucleic Acids Res. 2001, 29, 1097–1106.
(22) Chatterjee, A.; Li, Y.; Zhang, Y.; Grove, T. L.; Lee, M.; Krebs,
C.; Booker, S. J.; Begley, T. P.; Ealick, S. E. Nat. Chem. Biol. 2008,
4, 758–765.
most likely proceeds by a polar nucleophilic displacement, as do
all characterized SAM-dependent methyltransferases.1
Herein we have shown that RlmN and Cfr catalyze two separate
and distinct reactions, exploiting both polar and radical reactiv-
ities of SAM within a single polypeptide (Scheme 2). Indeed,
these proteins both possess methyltransferase and methylsynthase
activities. They contain only one [4Fe-4S] cluster (ligated by
cysteines in CxxxCxxC motifs) to which SAM binds via its α-amino
and carboxy groups.25 In this conformation, methyl transfer to
unmodified C355 of RlmN (C338 of Cfr) takes place rapidly.
Release of the product, SAH, permits binding of a second molecule
of SAM to the exact same site; however, methyl transfer to the
reactive cysteine is now blocked. Upon binding of the RNA
substrate and the addition of an electron to the [4Fe-4S]2+
cluster, SAM is now induced to fragment into methionine and
the 50-dA•, the latter initiating catalysis by abstracting a hydrogen
atom from the mCys residue. Our studies show that methyl
transfer to the target Cys residue does not require the presence of
substrate. Whether substrate binding accelerates this step is yet to
be determined. However, our previous studies showed that
substrate binding does indeed effect radical formation when
the physiological reducing system is used to supply the requisite
electron.7 Excitingly, this mode of catalysis is a clever twist on the
“principle of economy in the evolution of binding sites,” wherein
Nature evolves only a single substrate-binding site for reactions
that involve two or more substrates with similar structural elements,
and then mediates transfer of a group from one to the other by means
of an intermediate enzyme functional group covalent adduct.33
The Cfr and RlmN reactions are the first recognized instances in
which a single substrate-binding site activates one molecule both
for polar and radical-based chemistry.
(23) MartinezꢀGomez, N. C.; Downs, D. M. Biochemistry 2008,
47, 9054–9056.
(24) McGlynn, S. E.; Boyd, E. S.; Shepard, E. M.; Lange, R. K.;
Gerlach, R.; Broderick, J. B.; Peters, J. W. J. Bacteriol. 2010,
192, 595–598.
(25) Boal, A. K.; Grove, T. L.; McLaughlin, M. I.; Yennawar, N. H.;
Booker, S. J.; Rosenzweig, A. C. Science 2011, 332, 1089–1092.
(26) Vey, J. L.; Drennan, C. L. Chem. Rev. 2011, 111, 2487–2506.
(27) Booth, M. P. S.; Challand, M. R.; Emery, D. C.; Roach, P. L.;
Spencer, J. Protein Expr. Purif. 2010, 74, 204–210.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details and char-
b
acterization data. This material is available free of charge via the
(28) Kaminska, K. H.; Purta, E.; Hansen, L. H.; Bujnicki, J. M.;
Vester, B.; Long, K. S. Nucleic Acids Res. 2010, 38, 1652–1663.
(29) Atta, M.; Mulliez, E.; Arragain, S.; Forouhar, F.; Hunt, J. F.;
Fontecave, M. Curr. Opin. Struct. Biol. 2010, 20, 1–9.
(30) Booker, S. J.; Cicchillo, R. M.; Grove, T. L. Curr. Opin. Chem.
Biol. 2007, 11, 543–552.
(31) Parkin, S. E.; Chen, S.; Ley, B. A.; Mangravite, L.; Edmondson,
D. E.; Huynh, B. H.; Bollinger, J. M., Jr. Biochemistry 1998,
37, 1124–1130.
(32) Cicchillo, R. M.; Lee, K.-H.; Baleanu-Gogonea, C.; Nesbitt,
N. M.; Krebs, C.; Booker, S. J. Biochemistry 2004, 43, 11770–11781.
(33) Frey, P. A., Nucleotidyltransferases and Phosphotransferases:
Stereochemistry and Covalent Intermediates. In The Enzymes, 3rd ed.;
Sigman, D. S., Ed.; Academic Press, Inc.: San Diego, 1992; Vol. 20.
’ AUTHOR INFORMATION
Corresponding Author
ckrebs@psu.edu; squire@psu.edu
’ ACKNOWLEDGMENT
This work was supported by the National Institutes of Health
(GM-63847 to S.J.B.). We thank Tatiana N. Laremore of the
PSU MS facility for collecting high-resolution MS data.
’ REFERENCES
(1) Frey, P. A.; Hegeman, A. D. Oxford University Press: New York,
2007.
19589
dx.doi.org/10.1021/ja207327v |J. Am. Chem. Soc. 2011, 133, 19586–19589