10.1016/j.ejmech.2012.03.007
The study investigates the synthesis and biological evaluation of a series of 2-aminopyrimidine based 4-aminoquinoline compounds designed to combat malaria, particularly against drug-resistant strains of Plasmodium falciparum. The researchers synthesized these compounds using a protocol that involved the transformation of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) into 2-aminopyrimidines linked to 4-aminoquinolines. The compounds were evaluated for their in vitro anti-plasmodial activity against both chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains of P. falciparum. The study found that some of these compounds, notably 10r, exhibited potent anti-plasmodial activity, with IC50 values significantly lower than that of chloroquine (CQ), especially against the CQR strain. The structure-activity relationship (SAR) analysis revealed that the length and nature of the spacer connecting the pharmacophores, as well as the presence of substituents like nitro groups, influenced the compounds' potency. The mode of action studies indicated that these compounds bind to heme and m-oxo-heme, inhibiting the formation of b-hematin, similar to CQ. Additionally, the compounds showed binding affinity to DNA, particularly AT-rich DNA, suggesting another potential mechanism of action. Molecular docking analysis with Pf DHFR further supported the compounds' ability to interact with this enzyme, which is crucial for the parasite's DNA biosynthesis. Overall, the study highlights the potential of these hybrid compounds as new anti-malarial agents with activity against drug-resistant strains.