Technology Process of C24H26ClNO4S
There total 7 articles about C24H26ClNO4S which
guide to synthetic route it.
The literature collected by LookChem mainly comes from the sharing of users and the free literature resources found by Internet computing technology. We keep the original model of the professional version of literature to make it easier and faster for users to retrieve and use. At the same time, we analyze and calculate the most feasible synthesis route with the highest yield for your reference as below:
synthetic route:
- Guidance literature:
-
Multi-step reaction with 3 steps
1.1: di-isopropyl azodicarboxylate; triphenylphosphine / tetrahydrofuran / 0 - 25 °C
2.1: n-butyllithium / tetrahydrofuran / -78 °C
2.2: -78 - 25 °C
3.1: dmap; triethylamine / Neat (no solvent)
With
dmap; n-butyllithium; di-isopropyl azodicarboxylate; triethylamine; triphenylphosphine;
In
tetrahydrofuran;
1.1: Mitsunobu reaction;
DOI:10.1002/ejoc.201100129
- Guidance literature:
-
Multi-step reaction with 3 steps
1.1: di-isopropyl azodicarboxylate; triphenylphosphine / tetrahydrofuran / 0 - 25 °C
2.1: n-butyllithium / tetrahydrofuran / -78 °C
2.2: -78 - 25 °C
3.1: dmap; triethylamine / Neat (no solvent)
With
dmap; n-butyllithium; di-isopropyl azodicarboxylate; triethylamine; triphenylphosphine;
In
tetrahydrofuran;
1.1: Mitsunobu reaction;
DOI:10.1002/ejoc.201100129
- Guidance literature:
-
Multi-step reaction with 5 steps
1.1: sodium hydride / tetrahydrofuran / 6 h / 0 - 25 °C
2.1: trifluoroacetic acid / dichloromethane / 2 h / 25 °C
3.1: di-isopropyl azodicarboxylate; triphenylphosphine / tetrahydrofuran / 0 - 25 °C
4.1: n-butyllithium / tetrahydrofuran / -78 °C
4.2: -78 - 25 °C
5.1: dmap; triethylamine / Neat (no solvent)
With
dmap; n-butyllithium; di-isopropyl azodicarboxylate; sodium hydride; triethylamine; triphenylphosphine; trifluoroacetic acid;
In
tetrahydrofuran; dichloromethane;
3.1: Mitsunobu reaction;
DOI:10.1002/ejoc.201100129