Welcome to LookChem.com Sign In|Join Free

CAS

  • or

100-82-3

Post Buying Request

100-82-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

100-82-3 Usage

Chemical Properties

clear colorless liquid

Uses

3-Fluorobenzylamine has been used to study the rate of reaction of benzylamines with 1-Chloro-2,4-dinitrobenzene and toluene-p-sulphonyl chloride. It has also been used in the synthesis of substituted amino-sulfonamide protease inhibitors (PIs) DPC 681 and DPC 684.

Check Digit Verification of cas no

The CAS Registry Mumber 100-82-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,0 and 0 respectively; the second part has 2 digits, 8 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 100-82:
(5*1)+(4*0)+(3*0)+(2*8)+(1*2)=23
23 % 10 = 3
So 100-82-3 is a valid CAS Registry Number.
InChI:InChI=1/C7H8FN/c8-7-3-1-2-6(4-7)5-9/h1-4H,5,9H2/p+1

100-82-3 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (B23527)  3-Fluorobenzylamine, 97%   

  • 100-82-3

  • 5g

  • 775.0CNY

  • Detail
  • Alfa Aesar

  • (B23527)  3-Fluorobenzylamine, 97%   

  • 100-82-3

  • 10g

  • 1359.0CNY

  • Detail
  • Alfa Aesar

  • (B23527)  3-Fluorobenzylamine, 97%   

  • 100-82-3

  • 25g

  • 3288.0CNY

  • Detail

100-82-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-Fluorobenzylamine

1.2 Other means of identification

Product number -
Other names 3-FluorobenzylaMine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:100-82-3 SDS

100-82-3Relevant articles and documents

Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2

Shan, Hengyue,Liu, Jianping,Shen, Jiali,Dai, Jialin,Xu, Gang,Lu, Kuankuan,Han, Chao,Wang, Yaru,Xu, Xiaolong,Tong, Yilun,Xiang, Huaijiang,Ai, Zhiyuan,Zhuang, Guanglei,Hu, Junhao,Zhang, Zheng,Li, Ying,Pan, Lifeng,Tan, Li

, p. 855 - 9,865 (2021/05/18)

The COVID-19 pandemic has been disastrous to society and effective drugs are urgently needed. The papain-like protease domain (PLpro) of SARS-CoV-2 (SCoV2) is indispensable for viral replication and represents a putative target for pharmacological intervention. In this work, we describe the development of a potent and selective SCoV2 PLpro inhibitor, 19. The inhibitor not only effectively blocks substrate cleavage and immunosuppressive function imparted by PLpro, but also markedly mitigates SCoV2 replication in human cells, with a submicromolar IC50. We further present a convenient and sensitive activity probe, 7, and complementary assays to readily evaluate SCoV2 PLpro inhibitors in vitro or in cells. In addition, we disclose the co-crystal structure of SCoV2 PLpro in complex with a prototype inhibitor, which illuminates their detailed binding mode. Overall, these findings provide promising leads and important tools for drug discovery aiming to target SCoV2 PLpro.

Benzimidazole fragment containing Mn-complex catalyzed hydrosilylation of ketones and nitriles

Ganguli, Kasturi,Mandal, Adarsha,Sarkar, Bidisha,Kundu, Sabuj

supporting information, (2020/08/13)

The synthesis of a new bidentate (NN)–Mn(I) complex is reported and its catalytic activity towards the reduction of ketones and nitriles is studied. On comparing the reactivity of various other Mn(I) complexes supported by benzimidazole ligand, it was observed that the Mn(I) complexes bearing 6-methylpyridine and benzimidazole fragments exhibited the highest catalytic activity towards monohydrosilylation of ketones and dihydrosilylation of nitriles. Using this protocol, a wide range of ketones were selectively reduced to the corresponding silyl ethers. In case of unsaturated ketones, the chemoselective reduction of carbonyl group over olefinic bonds was observed. Additionally, selective dihydrosilylation of several nitriles were also achieved using this complex. Mechanistic investigations with radical scavengers suggested the involvement of radical species during the catalytic reaction. Stoichiometric reaction of the Mn(I) complex with phenylsilane revealed the formation of a new Mn(I) complex.

Highly Stable COF-Supported Co/Co(OH)2 Nanoparticles Heterogeneous Catalyst for Reduction of Nitrile/Nitro Compounds under Mild Conditions

Mullangi, Dinesh,Chakraborty, Debanjan,Pradeep, Anu,Koshti, Vijay,Vinod, Chathakudath P.,Panja, Soumendranath,Nair, Sunil,Vaidhyanathan, Ramanathan

, (2018/09/18)

Ordered nanoporosity in covalent organic framework (COF) offers excellent opportunity for property development. Loading nanoparticles (nPs) onto them is one approach to introducing tailor-made properties into a COF. Here, a COF–Co/Co(OH)2 composite containing about 16 wt% of 2 nPs is prepared on a N-rich COF support that catalyzes the release of theoretical equivalence of H2 from readily available, safe, and cheap NaBH4. Furthermore, the released H2 is utilized for the hydrogenation of nitrile and nitro compounds to amines under ambient conditions in a facile one-pot reaction. The COF “by choice” is built from “methoxy” functionalized dialdehydes which is crucial in enabling the complete retention of the COF structure under the conditions of the catalysis, where the regular Schiff bonds would have hydrolyzed. The N-rich binding pockets in the COF ensure strong nP–COF interactions, which provides stability and enables catalyst recycling. Modeling studies reveal the crucial role played by the COF in exposing the active facets and thereby in controlling the activation of the reducing agent. Additionally, via density functional theory, we provide a rational explanation for how these COFs can stabilize nanoparticles which grow beyond the limiting pore size of the COF and yet result in a truly stable heterogeneous catalyst – a ubiquitous observation. The study underscores the versatility of COF as a heterogeneous support for developing cheap and highly active nonnoble metal catalysts.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 100-82-3