100233-15-6Relevant articles and documents
Development of Anthraquinone Derivatives as Ectonucleoside Triphosphate Diphosphohydrolase (NTPDase) Inhibitors With Selectivity for NTPDase2 and NTPDase3
Baqi, Younis,Fiene, Amelie,Müller, Christa E.,Malik, Enas M.,Pelletier, Julie,Rashed, Mahmoud,Sévigny, Jean,Sch?kel, Laura
, (2020/09/17)
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of nucleoside tri- and di-phosphates to mono-phosphates. The products are subsequently hydrolyzed by ecto-5′-nucleotidase (ecto-5′-NT) to nucleosides. NTPDase inhibitors have potential as novel drugs, e.g., for the treatment of inflammation, neurodegenerative diseases, and cancer. In this context, a series of anthraquinone derivatives structurally related to the anthraquinone dye reactive blue-2 (RB-2) was synthesized and evaluated as inhibitors of human NTPDases utilizing a malachite green assay. We identified several potent and selective inhibitors of human NTPDase2 and -3. Among the most potent NTPDase2 inhibitors were 1-amino-4-(9-phenanthrylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (20, PSB-16131, IC50 of 539 nM) and 1-amino-4-(3-chloro-4-phenylsulfanyl)phenylamino-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (48, PSB-2020, IC50 of 551 nM). The most potent NTPDase3 inhibitors were 1-amino-4-[3-(4,6-dichlorotriazin-2-ylamino)-4-sulfophenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (42, PSB-1011, IC50 of 390 nM) and 1-amino-4-(3-carboxy-4-hydroxyphenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (33, PSB-2046, IC50 of 723 nM). The best NTPDase2 inhibitor 20 showed a non-competitive inhibition type, while the NTPDase3 inhibitor 42 behaved as a mixed-type inhibitor. These potent compounds were found to be selective vs. other NTPDases. They will be useful tools for studying the roles of NTPDase2 and -3 in physiology and under pathological conditions.
Inhibitors for the bacterial ectonucleotidase Lp1NTPDase from Legionella pneumophila
Fiene, Amelie,Baqi, Younis,Malik, Enas M.,Newton, Patrice,Li, Wenjin,Lee, Sang-Yong,Hartland, Elizabeth L.,Müller, Christa E.
, p. 4363 - 4371 (2016/08/23)
Legionella pneumophila is an aerobic, Gram-negative bacterium of the genus Legionella, which constitutes the major causative agent of Legionnaires’ disease. Recently a nucleoside triphosphate diphosphohydrolase (NTPDase) from L. pneumophila was identified and termed Lp1NTPDase; it was found to be a structural and functional homolog of mammalian NTPDases catalyzing the hydrolysis of ATP to ADP and ADP to AMP. Its activity is believed to contribute to the virulence of Legionella pneumophila. Therefore Lp1NTPDase inhibitors are considered as novel antibacterial drugs. However, only weakly potent compounds are available so far. In the present study, a capillary electrophoresis (CE)-based enzyme assay for monitoring the Lp1NTPDase activity was established. The enzymatic reaction was performed in a test tube followed by separation of substrate and products by CE and subsequent quantification by UV analysis. After kinetic characterization of the enzyme, a series of 1-amino-4-ar(alk)ylamino-2-sulfoanthraquinone derivatives structurally related to the anthraquinone dye Reactive Blue 2, a non-selective ecto-NTPDase inhibitor, was investigated for inhibitory activity on Lp1NTPDase using the CE-based enzyme assay. Derivatives bearing a large lipophilic substituent (e.g., fused aromatic rings) in the 4-position of the 1-amino-2-sulfoanthraquinone showed the highest inhibitory activity. Compounds with IC50values in the low micromolar range were identified. The most potent inhibitor was 1-amino-4-[phenanthrene-9-yl-amino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (28, PSB-16131), with an IC50-value of 4.24?μM. It represents the most potent Lp1NTPDase inhibitor described to date. These findings may serve as a starting point for further optimization. Lp1NTPDase inhibition provides a novel approach for the (immuno)therapy of Legionella infections.
High-affinity, non-nucleotide-derived competitive antagonists of platelet P2Y12 receptors
Baqi, Younis,Atzler, Kerstin,K?se, Meryem,Gl?nzel, Markus,Müller, Christa E.
supporting information; experimental part, p. 3784 - 3793 (2010/04/24)
Anthraquinone derivatives related to the moderately potent, nonselective P2Y12 receptor antagonist reactive blue 2 (6) have been synthesized and optimized with respect to P2Y12 receptor affinity. A radioligand binding assay utilizing human blood platelet membranes and the P2Y12 receptor-selective antagonist radioligand [3H]2-propylthioadenosine- 5′-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([3H]PSB-0413) was applied for compound testing. 1-Amino-2- sulfoanthraquinone derivatives bearing a (p-phenylamino) anilino substitution in the 4-position and an additional acidic function in the meta-position of the aniline ring showed high P2Y12 receptor affinity. These new anthraquinone derivatives became accessible by a recently developed copper(0)-catalyzed Ullmann coupling reaction of 1-amino-4-bromoanthraquinone derivatives with anilines in phosphate buffer under microwave irradiation. The most potent compounds exhibited Ki values of 24.9 nM (1-amino-4-[4-phenylamino-3-sulfophenylamino]-9,10-dioxo-9,10-dihydroanthracene- 2-sulfonate, PSB-0739, 39), and 21.0 nM (1-amino-4-[4-phenylamino-3- carboxyphenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate, PSB-0702, 41), respectively. 1-Amino-2-sulfo-4-anilinoanthraquinone derivatives appeared to be noncytotoxic, as shown for selected derivatives at two human cell lines (melanoma and astrocytoma). Compounds 39 and 41 represent new lead structures for the development of antithrombotic drugs.
Combinatorial synthesis of anilinoanthraquinone derivatives and evaluation as non-nucleotide-derived P2Y2 receptor antagonists
Weyler, Stefanie,Baqi, Younis,Hillmann, Petra,Kaulich, Marko,Hunder, Andrea M.,Mueller, Ingrid A.,Mueller, Christa E.
, p. 223 - 227 (2008/09/19)
A library of anilinoanthraquinone derivatives was synthesized by parallel Ullmann coupling reaction of bromaminic acid with aniline derivatives in solution using a compact parallel synthesizer. The products were purified by HPLC and evaluated as antagonists at mouse and human P2Y2 receptors. 4-Phenylamino-substituted 1-amino-2-sulfoanthraquinones, for example, 1-amino-4-(2-methoxyphenyl)-2-sulfoanthraquinone (PSB-716), were potent P2Y2 antagonists with IC50 values in the low micromolar range.