Welcome to LookChem.com Sign In|Join Free

CAS

  • or

106927-48-4

Post Buying Request

106927-48-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

106927-48-4 Usage

Chemical Properties

Light Yellow Crystalline Solid

Uses

Different sources of media describe the Uses of 106927-48-4 differently. You can refer to the following data:
1. 4-Nitrophenyl β-D-cellotrioside is a chromogenic substrate for endoglucanases and cellobiohydrolases. Hydrolysis of this substrate by these enzymes liberates 4-nitrophenol, which generates a yellow color that is measured by monitoring absorbance at 405 nm.[Cayman Chemical]
2. p-Nitrophenyl β-D-Cellotrioside (cas# 106927-48-4) is a compound useful in organic synthesis.

Check Digit Verification of cas no

The CAS Registry Mumber 106927-48-4 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,0,6,9,2 and 7 respectively; the second part has 2 digits, 4 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 106927-48:
(8*1)+(7*0)+(6*6)+(5*9)+(4*2)+(3*7)+(2*4)+(1*8)=134
134 % 10 = 4
So 106927-48-4 is a valid CAS Registry Number.
InChI:InChI=1/C24H35NO18/c26-5-10-13(29)14(30)17(33)23(39-10)42-21-12(7-28)41-24(19(35)16(21)32)43-20-11(6-27)40-22(18(34)15(20)31)38-9-3-1-8(2-4-9)25(36)37/h1-4,10-24,26-35H,5-7H2

106927-48-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name p-Nitrophenyl β-D-Cellotrioside

1.2 Other means of identification

Product number -
Other names 2-[6-[4,5-dihydroxy-2-(hydroxymethyl)-6-(4-nitrophenoxy)oxan-3-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:106927-48-4 SDS

106927-48-4Relevant articles and documents

Effects of active site cleft residues on oligosaccharide binding, hydrolysis, and glycosynthase activities of rice BGlu1 and its mutants

Pengthaisong, Salila,Ketudat Cairns, James R.

, p. 1738 - 1752 (2014)

Rice BGlu1 (Os3BGlu7) is a glycoside hydrolase family 1 β-glucosidase that hydrolyzes cellooligosaccharides with increasing efficiency as the degree of polymerization (DP) increases from 2 to 6, indicating six subsites for glucosyl residue binding. Five subsites have been identified in X-ray crystal structures of cellooligosaccharide complexes with its E176Q acid-base and E386G nucleophile mutants. X-ray crystal structures indicate that cellotetraose binds in a similar mode in BGlu1 E176Q and E386G, but in a different mode in the BGlu1 E386G/Y341A variant, in which glucosyl residue 4 (Glc4) interacts with Q187 instead of the eliminated phenolic group of Y341. Here, we found that the Q187A mutation has little effect on BGlu1 cellooligosaccharide hydrolysis activity or oligosaccharide binding in BGlu1 E176Q, and only slight effects on BGlu1 E386G glycosynthase activity. X-ray crystal structures showed that cellotetraose binds in a different position in BGlu1 E176Q/Y341A, in which it interacts directly with R178 and W337, and the Q187A mutation had little effect on cellotetraose binding. Mutations of R178 and W337 to A had significant and nonadditive effects on oligosaccharide hydrolysis by BGlu1, pNPGlc cleavage and cellooligosaccharide inhibition of BGlu1 E176Q and BGlu1 E386G glycosynthase activity. Hydrolysis activity was partially rescued by Y341 for longer substrates, suggesting stacking of Glc4 on Y341 stabilizes binding of cellooligosaccharides in the optimal position for hydrolysis. This analysis indicates that complex interactions between active site cleft residues modulate substrate binding and hydrolysis.

Glycosynthase with broad substrate specificity-an efficient biocatalyst for the construction of oligosaccharide library

Wei, Jinhua,Lv, Xun,Lue, Yang,Yang, Gangzhu,Fu, Lifeng,Yang, Liu,Wang, Jianjun,Gao, Jianhui,Cheng, Shuihong,Duan, Qian,Jin, Cheng,Li, Xuebing

, p. 2414 - 2419 (2013/05/23)

A versatile glycosynthase (TnG-E338A) with strikingly broad substrate scope has been developed from Thermus nonproteolyticus β-glycosidase (TnG) by using site-directed mutagenesis. The practical utility of this biocatalyst has been demonstrated by the facile generation of a small library containing various oligosaccharides and a steroidal glycoside (total 25 compounds) in up to 100 % isolated yield. Moreover, an array of eight gluco-oligosaccharides has been readily synthesized by the enzyme in a one-pot, parallel reaction, which highlights its potential in the combinatorial construction of a carbohydrate library that will assist glycomic and glycotherapeutic research. Significantly, the enzyme provides a means by which glycosynthase technology may be extended to combinatorial chemistry.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 106927-48-4