1111096-19-5Relevant articles and documents
Protodeboronation of (Hetero)Arylboronic Esters: Direct versus Prehydrolytic Pathways and Self-/Auto-Catalysis
Hayes, Hannah L. D.,Wei, Ran,Assante, Michele,Geogheghan, Katherine J.,Jin, Na,Tomasi, Simone,Noonan, Gary,Leach, Andrew G.,Lloyd-Jones, Guy C.
supporting information, p. 14814 - 14826 (2021/09/13)
The kinetics and mechanism of the base-catalyzed hydrolysis (ArB(OR)2→ ArB(OH)2) and protodeboronation (ArB(OR)2→ ArH) of a series of boronic esters, encompassing eight different polyols and 10 polyfluoroaryl and heteroaryl moieties, have been investigated by in situ and stopped-flow NMR spectroscopy (19F,1H, and11B), pH-rate dependence, isotope entrainment,2H KIEs, and KS-DFT computations. The study reveals the phenomenological stability of boronic esters under basic aqueous-organic conditions to be highly nuanced. In contrast to common assumption, esterification does not necessarily impart greater stability compared to the corresponding boronic acid. Moreover, hydrolysis of the ester to the boronic acid can be a dominant component of the overall protodeboronation process, augmented by self-, auto-, and oxidative (phenolic) catalysis when the pH is close to the pKaof the boronic acid/ester.
C-H borylation by platinum catalysis
Furukawa, Takayuki,Tobisu, Mamoru,Chatani, Naoto
, p. 332 - 342 (2017/05/09)
Herein, we describe the platinum-catalyzed borylation of aromatic C-H bonds. N-Heterocyclic carbene-ligated platinum catalysts are found to be efficient catalysts for the borylation of aromatic C(sp2)-H bonds when bis(pinacolato)diboron is used as the boron source. The most remarkable feature of these Pt catalysts is their lack of sensitivity towards the degree of steric hindrance around the C-H bonds undergoing the borylation reaction. These Pt catalysts allow for the synthesis of sterically congested 2,6-disubstituted phenylboronic esters, which are otherwise difficult to synthesize using existing C-H borylation methods. Furthermore, platinum catalysis allows for the site-selective borylation of the C-H bonds ortho to fluorine substituents in fluoroarene systems. Preliminary mechanistic studies and work towards the synthetic application of this platinum catalyzed C-H borylation process are described.
C-H Functionalization at Sterically Congested Positions by the Platinum-Catalyzed Borylation of Arenes
Furukawa, Takayuki,Tobisu, Mamoru,Chatani, Naoto
supporting information, p. 12211 - 12214 (2015/10/12)
Despite significant progress in the area of C-H bond functionalization of arenes, no general method has been reported for the functionalization of C-H bonds at the sterically encumbered positions of simple arenes, such as mesitylene. Herein, we report the development of the first platinum-based catalyst for C-H borylation of arenes and heteroarenes. Notably, this method exhibited high tolerance toward steric hindrance and provided rapid access to a series of 2,6-disubstituted phenylboronic esters, valuable building blocks for further elaborations.
A C-H borylation approach to suzuki-miyaura coupling of typically unstable 2-heteroaryl and polyfluorophenyl boronates
Robbins, Daniel W.,Hartwig, John F.
supporting information; experimental part, p. 4266 - 4269 (2012/10/08)
A method for the synthesis of biaryls and heterobiaryls from arenes and haloarenes without the intermediacy of unstable boronic acids is described. Pinacol boronate esters that are analogous to unstable boronic acids are formed in high yield by iridium-catalyzed C-H borylation of heteroarenes and fluoroarenes. These boronates are stable in the solid state or in solution and can be generated and used in situ. They couple with aryl halides in the presence of simple palladium catalysts, providing a convenient route to biaryl and heteroaryl products that have been challenging to prepare via boronic acids.