Welcome to LookChem.com Sign In|Join Free

CAS

  • or

114446-57-0

Post Buying Request

114446-57-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

114446-57-0 Usage

Uses

(1R)-2-chloro-1-(2,4-dichlorophenyl)ethan-1-ol is a useful research chemical.

Check Digit Verification of cas no

The CAS Registry Mumber 114446-57-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,1,4,4,4 and 6 respectively; the second part has 2 digits, 5 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 114446-57:
(8*1)+(7*1)+(6*4)+(5*4)+(4*4)+(3*6)+(2*5)+(1*7)=110
110 % 10 = 0
So 114446-57-0 is a valid CAS Registry Number.

114446-57-0Relevant articles and documents

Development of an Enzymatic Process for the Synthesis of (S)-2-Chloro-1-(2,4-dichlorophenyl) Ethanol

Wei, Teng-Yun,Tang, Jia-Wei,Ni, Guo-Wei,Wang, Hong-Yi,Yi, Dong,Zhang, Fu-Li,Chen, Shao-Xin

, p. 1822 - 1828 (2019)

(S)-2-Chloro-1-(2,4-dichlorophenyl) ethanol (3) is a chiral intermediate in the synthesis of luliconazole ((R)-E-1). Here, we report a novel biopreparation of 3 by bioreduction of 2-chloro-1-(2,4-dichlorophenyl) ethanone (2) using recombinant Escherichia

Efficient biosynthesis of (R)-2-chloro-1-(2, 4-dichlorophenyl) ethanol using a mutant short-chain dehydrogenase from Novosphingobium aromaticivorans

Li, Guifang,Que, Fandi,Tang, Yunping,Zhao, Qiaojun,Zhou, Shuyao,Zhou, Yafeng

, (2020)

(R)-2-chloro-1-(2, 4-dichlorophenyl) ethanol ((R)-CPEO) is an important chiral intermediate for antifungal drug synthesis. (R)-CPEO can be produced from 2-chloro-1-(2, 4-dichlorophenyl) ethanone (CPE) via a mutant short-chain dehydrogenase/reductase from Novosphingobium aromaticivorans (NaSDR). The Vmax of a mutant NaSDR-G145A/I199L toward CPE (6.32 U mg?1) was greater than that of wild-type NaSDR (2.58 U mg?). The Km of mutant NaSDR-G145A/I199L toward CPE (0.23 mM) was less than that of wild-type NaSDR (0.38 mM), indicating that the substrate affinity of mutant NaSDR-G145A/I199L was the greater of the two. Docking simulations were used to illustrate the mechanisms of the increased enzyme activity of NaSDR-G145A/I199L; these showed that NaSDR-G145A/I199L presented a more effective docking posture than that of the wild-type enzyme. Further, NaSDR-G145A/I199L and glucose dehydrogenase (GDH) were used to transform 120 g/L CPE into (R)-CPEO. After 6 h, the conversion rate and enantiomeric excess values were 99% and 99.95%, respectively. The present study provides a practical method for high substrate loading of (R)-CPEO for industrial-scale applications.

Asymmetric transfer hydrogenation over Ru-TsDPEN catalysts supported on siliceous mesocellular foam

Huang, Xiaohua,Ying, Jackie Y.

, p. 1825 - 1827 (2007)

A siliceous mesocellular foam-immobilized Ru-TsDPEN complex exhibited excellent catalytic reactivity, enantioselectivity and reusability in the asymmetric transfer hydrogenation of an imine and ketones. The Royal Society of Chemistry.

Biocatalytic preparation of a key intermediate of antifungal drugs using an alcohol dehydrogenase with high organic tolerance

Yan, Jinrong,Wang, Xiaojing,Li, Fangling,Yang, Lei,Shi, Guixiang,Sun, Weihang,Shao, Lei,Huang, Junhai,Wu, Kai

supporting information, (2021/10/20)

In this study, an alcohol dehydrogenase derived from Lactobacillus kefir (LkADH) was engineered and a simple and practical bioreduction system was developed for the preparation of (R)-2-chloro-1-(2, 4-dichlorophenyl) ethanol ((R)-CDPO), a key intermediate for the synthesis of antifungal drugs. Through active pocket iterative saturation mutagenesis, mutant LkADH-D18 (Y190C/V196L/M206H/D150H) was obtained with high stereoselectivity (99% ee, R vs 87% ee, S) and increased activity (0.44 μmol·min?1·mg?1). LkADH-D18 demonstrated NAD(P)H regeneration capability using a high concentration of isopropanol (IPA) as a co-substrate. Using 40% IPA (v/v), 400 mM of (R)-CDPO (90.1 g·L-1) was obtained via complete substrate conversion using 40 mg·mL?1 LkADH-D18 wet cells. The biocatalytic process catalyzed at constant pH with the cheap co-solvent IPA contributed to improved isolated yield of (R)-CDPO (97%), lower reaction cost, and simpler downstream purification, indicating the potential utility of LkADH-D18 in future industrial applications.

CATALYSTS

-

Page/Page column 31; 37, (2020/12/11)

A compound, e.g. a diamine ligand, represented by the following general formula (1): (Formula (1)) wherein each * represents an asymmetric carbon atom; X represents a group selected from one of an ester (e.g. a t-butyl ester); a thioester; an amide; a heterocyclic moiety (e.g. a five-membered heterocyclic ring) comprising one or more of O, S, Se, and/or P (e.g. a furan, a tetrahydrofuran, a thiophene, an isoxazole, a bromo-furan, or a thiazole); a moiety (e.g. a five-membered heterocyclic ring) comprising a nitrogen atom, wherein the nitrogen atom is protected with a protecting group containing an electron-withdrawing group, preferably the protecting group is selected from one of a carbamate protecting group, an amide protecting group, an aryl sulphonamide protecting group, or an alkyl sulphonamide protecting group; and optionally X may additionally comprise a solid support, e.g. a polymeric or a silica particle; Y represents or is CtT'T'' where 't' is 0 or 1 and when 't' is 1 T' and T'' may individually represent a substituent, e.g. if t is 1, T' and/or T'' may each be hydrogen or deuterium atom, or a halogen atom; for example, Y may represent a carbon atom comprising two further substituents; Z represents a hydrogen atom or a deuterium atom; R1 represents an alkyl group (e.g. a functionalised alkyl group) preferably having between 1 to 100 carbon atoms, for example, between 1 to 30 carbon atoms (e.g. 1 to 20 carbon atoms, or 1 to 10 carbon atoms), a halogenated alkyl group preferably having between 1 to 100 carbon atoms (e.g. CF3), for example, between 1 to 30 carbon atoms (e.g. 1 to 20 carbon atoms, or 1 to 10 carbon atoms), an aryl group preferably having between 5 to 100 carbon atoms, e.g. 6 to 30 carbon atoms and optionally having one or more substituents selected from alkyl groups preferably having 1 to 100 carbon atoms, e.g. 1 to 10 carbon atoms, halogenated alkyl groups preferably having 1 to 100 carbon atoms, e.g. 1 to 10 carbon atoms, and/or halogen atoms; or R1 represents a solid support, e.g. a silica particle or a polymeric particle; R2 and R3 each independently represent a group selected from alkyl groups preferably having between 1 to 100 carbon atoms, for example 1 to 20 carbon atoms (e.g. 1 to 10 carbon atoms), aryl groups (e.g. phenyl groups), and cycloalkyl groups preferably having 3 to 8 carbon atoms, the aryl group or phenyl group optionally having one or more substituents selected from alkyl groups preferably having between 1 to 100 carbon atoms, e.g. between 1 to 20 carbon atoms (e.g. 1 to 10 carbon atoms), alkoxy groups preferably having between 1 to 100 carbon atoms, for example, between 1 to 20 carbon atoms (e.g. 1 to 10 carbon atoms), and halogen atoms, and each hydrogen atom of the cycloalkyl groups being optionally replaced by an alkyl group preferably having between 1 to 100 carbon atoms, e.g. 1 to 20 carbon atoms (e.g. 1 to 10 carbon atoms), or R1 represents a polyethylene glycol (PEG) moiety having the formula C2nH4n+2On+1 wherein n is an integer between 1 and 100; or R2 and R3 form a ring together with carbon atoms to which R2 and R3 are bonded; R4 represents a hydrogen atom or a deuterium atom.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 114446-57-0