1204431-41-3Relevant articles and documents
Design, synthesis, and crystal structures of 6-alkylidene-2′- substituted penicillanic acid sulfones as potent inhibitors of acinetobacter baumannii OXA-24 carbapenemase
Bou, German,Santillana, Elena,Sheri, Anjaneyulu,Beceiro, Alejandro,Sampson, Jared M.,Kalp, Matthew,Bethel, Christopher R.,Distler, Anne M.,Drawz, Sarah M.,Pagadala, Sundar Ram Reddy,Van Den Akker, Focco,Bonomo, Robert A.,Romero, Antonio,Buynak, John D.
, p. 13320 - 13331 (2010)
Class D β-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial β-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel β-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2′-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important β-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 β-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC50 values against OXA-24 and two OXA-24 β-lactamase variants ranged from 10 ± 1 (4 vs WT) to 338 ± 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest Ki (500 ± 80 nM vs WT), and 1 possessed the highest inactivation efficiency (kinact/ Ki = 0.21 ± 0.02 μM-1 s-1). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 A) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2′-substituted penicillin sulfones are effective mechanism-based inactivators of class D β-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D β-lactamases is proposed.