1242274-98-1Relevant articles and documents
[18F]fluoroethyltriazolyl monocyclam derivatives as imaging probes for the chemokine receptor CXCR4
Amor-Coarasa, Alejandro,Kelly, James M.,Singh, Pradeep K.,Ponnala, Shashikanth,Nikolopoulou, Anastasia,Williams, Clarence,Vedvyas, Yogindra,Jin, Moonsoo M.,David Warren,Babich, John W.
supporting information, (2019/05/01)
Determining chemokine receptor CXCR4 expression is significant in multiple diseases due to its role in promoting inflammation, cell migration and tumorigenesis. [68Ga]Pentixafor is a promising ligand for imaging CXCR4 expression in multiple tumor types, but its utility is limited by the physical properties of 68Ga. We screened a library of >200 fluorine-containing structural derivatives of AMD-3465 to identify promising candidates for in vivo imaging of CXCR4 expression by positron emission tomography (PET). Compounds containing fluoroethyltriazoles consistently achieved higher docking scores. Six of these higher scoring compounds were radiolabeled by click chemistry and evaluated in PC3-CXCR4 cells and BALB/c mice bearing bilateral PC3-WT and PC3-CXCR4 xenograft tumors. The apparent CXCR4 affinity of the ligands was relatively low, but tumor uptake was CXCR4-specific. The tumor uptake of [18F]RPS-534 (7.2 ± 0.3 %ID/g) and [18F]RPS-547 (3.1 ± 0.5 %ID/g) at 1 h p.i. was highest, leading to high tumor-to-blood, tumor-to-muscle, and tumor-to-lung ratios. Total cell-associated activity better predicted in vivo tumor uptake than did the docking score or apparent CXCR4 affinity. By this metric, and on the basis of their high yielding radiosynthesis, high tumor uptake, and good contrast to background, [18F]RPS-547, and especially [18F]RPS-534, are promising 18F-labeled candidates for imaging CXCR4 expression.
Novel monocyclam derivatives as HIV entry inhibitors: Design, synthesis, anti-HIV evaluation, and their interaction with the CXCR4 co-receptor
Pettersson, Sofia,Perez-Nueno, Violeta I.,Mena, Maria Pau,Clotet, Bonaventura,Este, Jose A.,Borrell, Jose I.,Teixido, Jordi
experimental part, p. 1272 - 1281 (2011/02/21)
The CXCR4 receptor has been shown to interact with the human immunodeficiency virus (HIV) envelope glycoprotein gp120, leading to fusion of viral and cell membranes. Therefore, ligands that can attach to this receptor represent an important class of therapeutic agents against HIV, thus inhibiting the first step in the cycle of viral infection: the virus-cell entry/ fusion. Herein we describe the in silico design, synthesis, and biological evaluation of novel monocyclam derivatives as HIV entry inhibitors. In vitro activity testing of these compounds in cell cultures against HIV strains revealed EC50 values in the low micromolar range without cytotoxicity at the concentrations tested. Docking and molecular dynamics simulations were performed to predict the binding interactions between CXCR4 and the novel monocyclam derivatives. A binding mode of these compounds is proposed which is consistent with the main existing site-directed mutagenesis data on the CXCR4 coreceptor. Moreover, molecular modeling comparisons were performed between these novel monocyclams, previously reported non-cyclam compounds from which the monocyclams are derived, and the well-known AMD3100 bicyclam CXCR4 inhibitors. Our results suggest that these three structurally diverse CXCR4 inhibitors bind to overlapping but not identical amino acid residues in the transmembrane regions of the receptor.
HETEROBIFUNCTIONAL INHIBITORS OF E-SELECTINS AND CXCR4 CHEMOKINE RECEPTORS
-
, (2010/11/17)
Compounds, compositions and methods are provided for treating cancer and inflammatory diseases, and for releasing cells such as stem cells (e.g., bone marrow progenitor cells) into circulating blood and enhancing retention of the cells in the blood. More specifically, heterobifunctional compounds that inhibit both E-selectins and CXCR4 chemokine receptors are described.