1309355-96-1Relevant articles and documents
A reagent-controlled SN2-glycosylation for the direct synthesis of β-linked 2-deoxy-sugars
Issa, John Paul,Bennett, Clay S.
, p. 5740 - 5744 (2014)
The efficient and stereoselective construction of glycosidic linkages remains one of the most formidable challenges in organic chemistry. This is especially true in cases such as β-linked deoxy-sugars, where the outcome of the reaction cannot be controlled using the stereochemical information intrinsic to the glycosyl donor. Here we show that p-toluenesulfonic anhydride activates 2-deoxy-sugar hemiacetals in situ as electrophilic species, which react stereoselectively with nucleophilic acceptors to produce β-anomers exclusively. NMR studies confirm that, under these conditions, the hemiacetal is quantitatively converted into an α-glycosyl tosylate, which is presumably the reactive species in the reaction. This approach demonstrates that use of promoters that activate hemiacetals as well-defined intermediates can be used to permit stereoselective glycosylation through an SN2-pathway.
Reagent-Controlled α-Selective Dehydrative Glycosylation of 2,6-Dideoxy- and 2,3,6-Trideoxy Sugars
Nogueira, Jason M.,Bylsma, Marissa,Bright, Danielle K.,Bennett, Clay S.
, p. 10088 - 10092 (2016)
We have found that activating either 2,3-bis(2,3,4-trimethoxyphenyl)cyclopropenone or 2,3-bis(2,3,4-trimethoxyphenyl)cyclopropene-1-thione with oxalyl bromide results in the formation of a species that promotes the glycosylation between 2,6-dideoxy-sugar hemiacetals and glycosyl acceptors in good yield and high α-selectivity. Both reactions are mild and tolerate a number of sensitive functional groups including highly acid-labile 2,3,6-trideoxy-sugar linkages.
Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions
Chang, Chun-Wei,Lin, Mei-Huei,Chan, Chieh-Kai,Su, Kuan-Yu,Wu, Chia-Hui,Lo, Wei-Chih,Lam, Sarah,Cheng, Yu-Ting,Liao, Pin-Hsuan,Wong, Chi-Huey,Wang, Cheng-Chung
, p. 12413 - 12423 (2021/05/03)
The stereoselectivity and yield in glycosylation reactions are paramount but unpredictable. We have developed a database of acceptor nucleophilic constants (Aka) to quantify the nucleophilicity of hydroxyl groups in glycosylation influenced by the steric, electronic and structural effects, providing a connection between experiments and computer algorithms. The subtle reactivity differences among the hydroxyl groups on various carbohydrate molecules can be defined by Aka, which is easily accessible by a simple and convenient automation system to assure high reproducibility and accuracy. A diverse range of glycosylation donors and acceptors with well-defined reactivity and promoters were organized and processed by the designed software program “GlycoComputer” for prediction of glycosylation reactions without involving sophisticated computational processing. The importance of Aka was further verified by random forest algorithm, and the applicability was tested by the synthesis of a Lewis A skeleton to show that the stereoselectivity and yield can be accurately estimated.
Reagent-Controlled Stereoselective Glycosylation
-
, (2015/02/19)
Provided are methods for the efficient stereoselective formation of glycosidic bonds, without recourse to prosthetic or directing groups.