Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1321829-36-0

Post Buying Request

1321829-36-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1321829-36-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 1321829-36-0 includes 10 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 7 digits, 1,3,2,1,8,2 and 9 respectively; the second part has 2 digits, 3 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 1321829-36:
(9*1)+(8*3)+(7*2)+(6*1)+(5*8)+(4*2)+(3*9)+(2*3)+(1*6)=140
140 % 10 = 0
So 1321829-36-0 is a valid CAS Registry Number.

1321829-36-0Downstream Products

1321829-36-0Relevant articles and documents

Asymmetric epoxidation of α,β-unsaturated ketones catalyzed by rare-earth metal amides RE[N(SiMe3)2]3with chiral TADDOL ligands

Shan, Haiwen,Lu, Chengrong,Zhao, Bei,Yao, Yingming

, p. 1043 - 1053 (2021/01/25)

The catalytic asymmetric epoxidation of α,β-unsaturated ketones by tert-butylhydroperoxide (TBHP) has been well established using rare-earth metal amides RE[N(SiMe3)2]3 (RE = La(1), Nd(2), Sm(3), Y(4), Yb(5)) with chiral TADDOL ligands. It was found that

Lanthanide complexes combined with chiral salen ligands: Application in the enantioselective epoxidation reaction of α,β-unsaturated ketones

Xia, Xuexiu,Lu, Chengrong,Zhao, Bei,Yao, Yingming

, p. 13749 - 13756 (2019/05/16)

Readily available lanthanide amides Ln[N(SiMe3)2]3 (Ln = Nd (1), Sm (2), Eu (3), Yb (4), La (5)), combined with chiral salen ligands H2La ((S,S)-N,N′-di-(3,5-disubstituted-salicylidene)-1,2-cyclohexan

Proton-Promoted and Anion-Enhanced Epoxidation of Olefins by Hydrogen Peroxide in the Presence of Nonheme Manganese Catalysts

Miao, Chengxia,Wang, Bin,Wang, Yong,Xia, Chungu,Lee, Yong-Min,Nam, Wonwoo,Sun, Wei

, p. 936 - 943 (2016/02/05)

We report a remarkable Br?nsted acid effect in the epoxidation of olefins by nonheme manganese catalysts and aqueous hydrogen peroxide. More specifically, a mononuclear nonheme manganese complex bearing a tetradentate N4 ligand, MnII(Dbp-MCP)(OTf)2 (Dbp-MCP = (1R,2R)-N,N′-dimethyl-N,N′-bis((R)-(3,5-di-tert-butyl-phenyl)-2-pyridinylmethyl)cyclohexane-1,2-diamine; OTf- = CF3SO3-), is a highly efficient catalyst in the epoxidation of olefins by aqueous H2O2 in the presence of H2SO4 (1-3 mol %). The yields of epoxide products as well as the chemo- and enantioselectivities increase dramatically in the presence of H2SO4; no formation of epoxides is observed in the absence of H2SO4. In addition, the product yields and enantioselectivities are dependent significantly on the manganese catalysts and Br?nsted acids. The catalytic epoxidation of olefins by other oxidants, such as peracids, alkyl hydroperoxides, and iodosylbenzene, is also affected by the presence of H2SO4; product yields and enantioselectivities are high and similar irrespective of the oxidants in the presence of H2SO4, suggesting that a common epoxidizing intermediate is generated in the reactions of [MnII(Dbp-MCP)]2+ and the oxidants. Mechanistic studies, performed with 18O-labeled water (H218O) and cumyl hydroperoxide, reveal that a high-valent manganese-oxo species is formed as an epoxidizing intermediate via O-O bond heterolysis of Mn-OOH(R) species. The role of H2SO4 is proposed to facilitate the formation of a high-valent Mn-oxo species and to increase the oxidizing power and enantioselectivity of the Mn-oxo oxidant in olefin epoxidation reactions. Density functional theory (DFT) calculations support experimental results such as the formation of a Mn(V)-oxo species as an epoxidizing intermediate.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1321829-36-0