Welcome to LookChem.com Sign In|Join Free

CAS

  • or
2-(4-NITROPHENOXY)PROPANOIC ACID, with the molecular formula C9H8NO5, is a chemical compound derived from propanoic acid featuring a nitrophenyl group attached to the second carbon. This yellow powder is relatively stable and serves as a versatile building block in organic chemistry, particularly in the synthesis of pharmaceuticals and agrochemicals. Its potential applications extend to the treatment of cardiovascular and inflammatory diseases.

13794-10-0

Post Buying Request

13794-10-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

13794-10-0 Usage

Uses

Used in Pharmaceutical Synthesis:
2-(4-NITROPHENOXY)PROPANOIC ACID is used as a key intermediate in the synthesis of various pharmaceuticals for its ability to be incorporated into complex molecular structures, enhancing the development of new drugs with specific therapeutic properties.
Used in Agrochemical Production:
In the agrochemical industry, 2-(4-NITROPHENOXY)PROPANOIC ACID is utilized as a building block for the creation of novel compounds with pesticidal or herbicidal properties, contributing to the advancement of crop protection strategies.
Used in Cardiovascular Disease Treatment:
2-(4-NITROPHENOXY)PROPANOIC ACID is studied for its potential use as a therapeutic agent in the treatment of cardiovascular diseases, possibly due to its influence on physiological pathways related to heart health.
Used in Inflammatory Disease Treatment:
2-(4-NITROPHENOXY)PROPANOIC ACID is also being investigated for its role in managing inflammatory diseases, potentially modulating inflammatory responses and offering relief from associated symptoms.

Check Digit Verification of cas no

The CAS Registry Mumber 13794-10-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,3,7,9 and 4 respectively; the second part has 2 digits, 1 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 13794-10:
(7*1)+(6*3)+(5*7)+(4*9)+(3*4)+(2*1)+(1*0)=110
110 % 10 = 0
So 13794-10-0 is a valid CAS Registry Number.
InChI:InChI=1/C9H9NO5/c1-6(9(11)12)15-8-4-2-7(3-5-8)10(13)14/h2-6H,1H3,(H,11,12)

13794-10-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(4-Nitrophenoxy)propanoic acid

1.2 Other means of identification

Product number -
Other names 4-Nitro-phenylaethermilchsaeure

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:13794-10-0 SDS

13794-10-0Relevant articles and documents

Access to Optically Enriched α-Aryloxycarboxylic Esters via Carbene-Catalyzed Dynamic Kinetic Resolution and Transesterification

Liu, Bin,Song, Runjiang,Xu, Jun,Majhi, Pankaj Kumar,Yang, Xing,Yang, Song,Jin, Zhichao,Chi, Yonggui Robin

supporting information, p. 3335 - 3338 (2020/04/30)

Optically active α-aryloxycarboxylic acids and their derivatives are important functional molecules. Disclosed here is a carbene-catalyzed dynamic kinetic resolution and transesterification reaction for access to this class of molecules with up to 99% yields and 99:1 er values. Addition of a chiral carbene catalyst to the ester substrate leads to two diastereomeric azolium ester intermediates that can quickly epimerize to each other and thus allows for effective dynamic kinetic resolution to be realized. The optically enriched ester products from our reaction can be quickly transformed to chiral herbicides and other bioactive molecules.

Structure-based modification of carbonyl-diphenylpyrimidines (Car-DPPYs) as a novel focal adhesion kinase (FAK) inhibitor against various stubborn cancer cells

Wang, Luhong,Ai, Min,Yu, Jiawen,Jin, Lingling,Wang, Changyuan,Liu, Zhihao,Shu, Xiaohong,Tang, Zeyao,Liu, Kexin,Luo, Hui,Guan, Wenshun,Sun, Xiuli,Ma, Xiaodong

, p. 154 - 162 (2019/04/13)

A family of carbonyl-substituted diphenylpyrimidine derivatives (Car-DPPYs) with strong activity against focal adhesion kinase (FAK), were described in this manuscript. Among them, compounds 7a (IC50 = 5.17 nM) and 7f (IC50 = 2.58 nM) displayed equal anti-FAK enzymatic activity to the lead compound TAE226 (6.79 nM). In particular, compound 7a also exhibited strong antiproliferative activity against several stubborn cancer cells, including AsPC-1 cells (IC50 = 0.105 μM), BxPC-3 cells (IC50 = 0.090 μM), and MCF-7/ADR cells (IC50 = 0.59 μM). Additionally, compound 7a also showed great antitumor efficacy in vivo via aAsPC-1 cancer Xenograft mouse model. The preliminary mechanism study by Western blot analysis revealed that 7a repressed FAK phosphorylation in AsPC cancer cells. Taken together, the results indicate that compound 7a may serve as a promising preclinical candidate for treatment of stubborn cancers.

Absorbable polyurethanes and methods of use thereof

-

Page/Page column 43, (2014/12/09)

Disclosed are novel bioabsorbable and biodegradable monomer compounds, bioabsorbable and biodegradable polymers therefrom, and methods of making such monomers and polymers, which are useful in pharmaceutical delivery systems, tissue engineering applicatio

Chlorination of 2-phenoxypropanoic acid with NCP in aqueous acetic acid: Using a novel ortho-para relationship and the para/meta ratio of substituent effects for mechanism elucidation

Segurado, Manuel A. P.,Reis, Joao Carlos R.,De Oliveira, Jaime D. Gomes,Kabilan, Senthamaraikannan,Shanthi, Manohar

, p. 5327 - 5336 (2008/02/07)

(Graph Presented) Rate constants were measured for the oxidative chlorodehydrogenation of (R,S)-2-phenoxypropanoic acid and nine ortho-, ten para- and five meta-substituted derivatives using (R,S)-1-chloro-3-methyl-2,6- diphenylpiperidin-4-one (NCP) as chlorinating agent. The kinetics was run in 50% (v/v) aqueous acetic acid acidified with perchloric acid under pseudo-first-order conditions with respect to NCP at temperature intervals of 5 K between 298 and 318 K, except at the highest temperature for the meta derivatives. The dependence of rate constants on temperature was analyzed in terms of the isokinetic relationship (IKR). For the 20 reactions studied at five different temperatures, tne isokinetic temperature was estimated to be 382 K, which suggests the preferential involvement of water molecules in the rate-determining step. The dependence of rate constants on meta and para substitution was analyzed using the tetralinear extension of the Hammett equation. The parameter λ for the para/meta ratio of polar substituent effects was estimated to be 0.926, and its electrostatic modeling suggests the formation of an activated complex bearing an electric charge near the oxygen atom belonging to the phenoxy group. A new approach is introduced for examining the effect of ortho substituents on reaction rates. Using IKR-determined values of activation enthalpies for a set of nine pairs of substrates with a given substituent, a linear correlation is found between activation enthalpies of ortho and para derivatives. The correlation is interpreted in terms of the selectivity of the reactant toward para- or ortho-monosubstituted substrates, the slope of which being related to the ortho effect. This slope is thought to be approximated by the ratio of polar substituent effects from ortho and para positions in benzene derivatives. Using the electrostatic theory of through-space interactions and a dipole length of 0.153 nm, this ratio was calculated at various positions of a charged reaction center along the benzene C1-C4 axis, being about 2.5 near the ring and decreasing steeply with increasing distance until reaching a minimum value of -0.565 at 1.3 nm beyond the aromatic ring. Activation enthalpies and entropies were estimated for substrates bearing the isoselective substituent in either ortho and para positions, being demonstrated that they are much different from the values for the parent substrate. The electrophilic attack on the phenolic oxygen atom by the protonated chlorinating agent is proposed as the rate-determining step, this step being followed by the fast rearrangement of the intermediate thus formed, leading to products containing chlorine in the aromatic ring.

Functionalized drugs and polymers derived therefrom

-

Page/Page column 22, (2008/06/13)

Compounds selected from: where DRUG-OH, DRUG-COOH and DRUG-NH2 are biologically active compounds; each X is independently selected from —CH2COO— (glycolic acid moiety), —CH(CH3)COO— (lactic acid moiety), —CH2CH2OCH2COO— (dioxanone moiety), —CH2CH2CH2CH2CH2COO— (caprolactone moiety), —(CH2)yCOO—, where y is 2-4 or 6-24 and —(CH2CH2O)zCH2COO—, where z is 2-24; each Y is independently selected from —COCH2O— (glycolic ester moiety), —COCH(CH3)O— (lactic ester moiety), —COCH2OCH2CH2O— (dioxanone ester moiety), —COCH2CH2CH2CH2CH2O— (caprolactone ester moiety), —CO(CH2)mO—, where m is 2-4 or 6-24 and —COCH2O(CH2CH2O)n— where n is between 2-24; R′ is hydrogen, benzyl or an alkyl group, the alkyl group being either straight-chained or branched; and p is 1-6. Multi-functional compounds and drug dimers, oligomers and polymers are also disclosed.

Kinetics and mechanism of thermal gas-phase elimination of α-substituted carboxylic acids: Role of relative basicity of α-substituents and acidity of incipient proton

Al-Awadi, Nouria A.,Kaul, Kamini,El-Dusouqui, Osman M. E.

, p. 499 - 504 (2007/10/03)

2-Phenoxypropanoic acid together with five of its aryl derivatives, its phenylthio and its N-phenylamino analogues were pyrolyzed at 494-566 K. The reactions were homogeneous, polar and free from catalytic and radical pathways, and obeyed a first-order rate equation. The limits of the Arrhenius log A (s-1) and E (kJ mol-1) values obtained for these reactions averaged 11.98 ± 1.71 and 158.1 ± 17.4, respectively. Analysis of the pyrolysates showed the elimination products to be carbon monoxide, acetaldehyde and the corresponding phenol, thiophenol or aniline compounds. The pyrolysis of 2-phenoxy- and 2-(N-phenylamino)-1-propanol was also investigated over the temperature range 638-792 K. The kinetic results and products analysis lend support to a reaction pathway involving a five-membered cyclic polar transition state. Copyright

Optical resolution of aryloxypropionic acids and their esters by HPLC on cellulose tris-3,5-dimethyl-triphenylcarbamate derivative

Azzolina,Collina,Ghislandi

, p. 1401 - 1416 (2007/10/02)

Chiral chromatographic resolution of a series of antiphlogistic 2- aryloxypropionic acids and their methyl and ethyl esters was performed using a Chiralcel OD column. The CSP selected resolved most of the acids and esters efficiently, the enantiomers being well separated without requiring time consuming analysis. Chromatographic separation of R enriched samples was performed to determine the correct elution order. Using eluting systems such as hexane and 2-propanol, or hexane, 2-propanol and formic acid, the S enantiomer of all acids and esters was always found to elute first. We also considered the role of electron-donating or electron-withdrawing substituents (at the aryloxylic moiety) on the chiral resolution. It was shown that the electronic features of the substituents have more influence on the chiral interactions between the solutes and the CSP than their steric hindrance. Finally we determined, by molecular models, the interaction between CSP and solutes. In this way were able to determine all the potential sites for interactions, which are compatible with the conformations of the compounds and the structure of the stationary phase, and point out those interactions which enable chiral resolution.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 13794-10-0