1386999-61-6Relevant articles and documents
Photolytic Activation of Late-Transition-Metal-Carbon Bonds and Their Reactivity toward Oxygen
Britovsek, George J. P.,De Aguirre, Adiran,Ho, Sarah K. Y.,Lam, Francis Y. T.,Maseras, Feliu,White, Andrew J. P.
supporting information, p. 4077 - 4091 (2021/12/17)
The photolytic activation of palladium(II) and platinum(II) complexes [M(BPI)(R)] (R = alkyl, aryl) featuring the 1,3-bis(2-pyridylimino)isoindole (BPI) ligand has been investigated in various solvents. In the absence of oxygen, the formation of chloro complexes [M(BPI)Cl] is observed in chlorinated solvents, most likely due to the photolytic degradation of the solvent and formation of HCl. The reactivity of the complexes toward oxygen has been studied both experimentally and computationally. Excitation by UV irradiation (365 nm) of the metal complexes [Pt(BPI)Me] and [Pd(BPI)Me] leads to distortion of the square-planar coordination geometry in the excited triplet state and a change in the electronic structure of the complexes that allows the interaction with oxygen. TD-DFT computational studies suggest that, in the case of palladium, the Pd(III) superoxide intermediate [Pd(BPI)(κ1-O2)Me] is formed and, in the case of platinum, the Pt(IV) peroxide intermediate [Pt(BPI)(κ2-O2)Me]. For alkyl complexes where metal-carbon bonds are sufficiently weak, the photoactivation leads to the insertion of oxygen into the metal-carbon bond to generate alkylperoxo complexes: for example [Pd(BPI)OOMe], which has been isolated and structurally characterized. For stronger M-C(aryl) bonds, the reaction of [Pt(BPI)Ph] with O2 and light results in a Pt(IV) complex, tentatively assigned as the peroxo complex [Pt(BPI)(κ2-O2)Ph], which in chlorinated solvents reacts further to give [Pt(BPI)Cl2Ph], which has been isolated and characterized by scXRD. In addition to the facilitation of oxygen insertion reactions, UV irradiation can also affect the reactivity of other components in the reaction mixture, such as the solvent or other reaction products, which can result in further reactions. Labeling studies using [Pt(BPI)(CD3)] in chloroform have shown that photolytic reactions with oxygen involve degradation of the solvent.
Photophysical and electrochemical properties of 1,3-bis(2-pyridylimino) isoindolate platinum(ii) derivatives
Hanson, Kenneth,Roskop, Luke,Patel, Niral,Griffe, Laurent,Djurovich, Peter I.,Gordon, Mark S.,Thompson, Mark E.
, p. 8648 - 8659 (2012/10/08)
A series of twelve platinum(ii) complexes of the form (N^N^N)PtX have been synthesized and characterized where N^N^N is 1,3-bis(2-pyridylimino)isoindolate ligands (BPI) or BPI ligands whose aryl moieties are substituted with tert-butyl, nitro, alkoxy, iodo or chloro groups, and X is a chloride, fluoride, cyano, acetate, phenyl or 4-(dimethylamino)phenyl ligand. All complexes display at least one irreversible oxidation and two reversible reduction waves at potentials dependent on the position and the electron donating or withdrawing nature of both X and the substituted N^N^N ligand. Broad room temperature phosphorescence ranging in energy from 594 to 680 nm was observed from the complexes, with quantum efficiencies ranging from 0.01 to 0.05. The efficiency of emission is dictated largely by nonradiative processes since the rate constants for nonradiative deactivation [(1.1-100) × 105 s -1] show greater variation than those for radiative decay [(0.57-4.0) × 04 s-1]. Nonradiative deactivation for compounds with X = Cl follow the energy gap law, i.e. the nonradiative rate constants increase exponentially with decreasing emission energy. Deactivation of the excited state appears to be strongly influenced by a non-planar distortion of the BPI ligand.