Welcome to LookChem.com Sign In|Join Free

CAS

  • or

140422-06-6

Post Buying Request

140422-06-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

140422-06-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 140422-06-6 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,4,0,4,2 and 2 respectively; the second part has 2 digits, 0 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 140422-06:
(8*1)+(7*4)+(6*0)+(5*4)+(4*2)+(3*2)+(2*0)+(1*6)=76
76 % 10 = 6
So 140422-06-6 is a valid CAS Registry Number.

140422-06-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 2,6-bis[(4-bromophenyl)methylidene]cyclohexan-1-one

1.2 Other means of identification

Product number -
Other names 2,6-bis-(4-bromobenzylidene)cyclohexanone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:140422-06-6 SDS

140422-06-6Relevant articles and documents

Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes

Bi?er, Abdullah,Taslimi, Parham,Yakal?, Gül,Gül?in, Ilhami,Serdar Gültekin, Mehmet,Turgut Cin, Günseli

, p. 393 - 404 (2018/11/23)

In this study, a series of novel bis-thiomethylcyclohexanone compounds (3a–3j) were synthesized by the addition of thio-Michael to the bis-chalcones under mild reaction conditions. The bis-thiomethylcyclohexanone derivatives (bis-sulfides) were characterized by 1H NMR, 13C NMR, FTIR and elemental analysis techniques. Furthermore, the molecular and crystal structures of 3h, 3i and 3j compounds were determined by single crystal X-ray diffraction studies. In this study, X-ray crystallography provided an alternative and often-complementary means for elucidating functional groups at the enzyme inhibitory site. Acetylcholinesterase (AChE) is a member of the hydrolase protein super family and has a significant role in acetylcholine-mediated neurotransmission. Here, we report the synthesis and determining of novel bis-thiomethylcyclohexanone compounds based hybrid scaffold of AChE inhibitors. The newly synthesized bis-thiomethylcyclohexanone compounds showed Ki values of in range of 39.14–183.23 nM against human carbonic anhydrase I isoenzyme (hCA I), 46.03–194.02 nM against human carbonic anhydrase II isoenzyme (hCA II), 4.55–32.64 nM against AChE and 12.77–37.38 nM against butyrylcholinesterase (BChE). As a result, novel bis-thiomethylcyclohexanone compounds can have promising anti Alzheimer drug potential and record novel hCA I, and hCA II enzymes inhibitor.

Inhibitor of CBP histone acetyltransferase downregulates p53 activation and facilitates methylation at lysine 27 on histone H3

Vincek, Adam S.,Patel, Jigneshkumar,Jaganathan, Anbalagan,Green, Antonia,Pierre-Louis, Valerie,Arora, Vimal,Rehmann, Jill,Mezei, Mihaly,Zhou, Ming-Ming,Ohlmeyer, Michael,Mujtaba, Shiraz

, (2018/09/10)

Tumor suppressor p53-directed apoptosis triggers loss of normal cells, which contributes to the side-effects from anticancer therapies. Thus, small molecules with potential to downregulate the activation of p53 could minimize pathology emerging from anticancer therapies. Acetylation of p53 by the histone acetyltransferase (HAT) domain is the hallmark of coactivator CREB-binding protein (CBP) epigenetic function. During genotoxic stress, CBP HAT-mediated acetylation is essential for the activation of p53 to transcriptionally govern target genes, which control cellular responses. Here, we present a small molecule, NiCur, which blocks CBP HAT activity and downregulates p53 activation upon genotoxic stress. Computational modeling reveals that NiCur docks into the active site of CBP HAT. On CDKN1A promoter, the recruitment of p53 as well as RNA Polymerase II and levels of acetylation on histone H3 were diminished by NiCur. Specifically, NiCur reduces the levels of acetylation at lysine 27 on histone H3, which concomitantly increases the levels of trimethylation at lysine 27. Finally, NiCur attenuates p53-directed apoptosis by inhibiting the Caspase 3 activity and cleavage of Poly (ADP-ribose) polymerase (PARP) in normal gastrointestinal epithelial cells. Collectively, NiCur demonstrates the potential to reprogram the chromatin landscape and modulate biological outcomes of CBP-mediated acetylation under normal and disease conditions.

Sulfonated PEG-intercalated montmorillonite [(Mt/PEG)-SO3H] as efficient and ecofriendly nanocatalyst for synthesis of α,α′-bis(substituted benzylidene)cycloalkanones

Dalil Heirati, Seyedeh Zahra,Shirini, Farhad,Fallah Shojaei, Abdollah

, p. 6167 - 6186 (2017/10/05)

(Montmorillonite/PEG)-SO3H nanocomposite was successfully prepared for the first time and introduced as a solid acid nanocatalyst. Initially, polyethylene glycol (PEG) polymeric chains were intercalated into interlayer spaces of montmorillonite. The resulting Mt/PEG nanocomposite with good mechanical and thermal stability was chosen as a useful clay mineral/polymer support for further modification with chlorosulfonic acid. Structural characterization of (Mt/PEG)-SO3H was carried out using X-ray diffraction (XRD) analysis, Brunauer–Emmett–Teller (BET) measurements, Barrett–Joyner–Halenda (BJH) analysis, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier-transform infrared (FT-IR) spectroscopy. The results showed that PEG chains were intercalated into the clay mineral layers and that the Mt/PEG nanocomposite was successfully sulfonated. (Mt/PEG)-SO3H nanocomposite exhibited high specific surface area and good stability up to around 150?°C, showing excellent potential for application as a recyclable nanocatalyst. (Mt/PEG)-SO3H was used as an efficient and ecofriendly solid acid nanocatalyst for preparation of α,α′-bis(substituted benzylidene)cycloalkanones under solvent-free conditions, leading to many interesting findings. The excellent conversion values confirm that the catalyst has strong and sufficient acidic sites, which are responsible for its catalytic performance. The reaction under mild conditions (room temperature) with excellent yield, catalyst recyclability (up to ten times), and simple work-up procedure represent useful advantages of (Mt/PEG)-SO3H for catalysis. Moreover, the reaction could be scaled up to 10 and 15?mmol scales.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 140422-06-6