1451042-67-3Relevant articles and documents
Ruthenium-catalyzed intramolecular arene C(sp2)-H amidation for synthesis of 3,4-dihydroquinolin-2(1 H)-ones
Au, Chi-Ming,Ling, Cho-Hon,Sun, Wenlong,Yu, Wing-Yiu
, p. 3310 - 3314 (2021/05/29)
We report the [Ru(p-cymene)(l-proline)Cl] ([Ru1])-catalyzed cyclization of 1,4,2-dioxazol-5-ones to form dihydroquinoline-2-ones in excellent yields with excellent regioselectivity via a formal intramolecular arene C(sp2)-H amidation. The reactions of the 2- and 4-substituted aryl dioxazolones proceeds initially through spirolactamization via electrophilic amidation at the arene site, which is para or ortho to the substituent. A Hammett correlation study showed that the spirolactamization is likely to occur by electrophilic nitrenoid attack at the arene, which is characterized by a negative ρ value of -0.73.
Synthesis of Lactams via Ir-Catalyzed C-H Amidation Involving Ir-Nitrene Intermediates
Li, Xiaoxun,Liu, Jitian,Tang, Weiping,Wang, Shuojin,Ye, Wenjing,Zheng, Junrong
, (2020/03/19)
x-membered lactams were synthesized via either an amidation of sp3 C-H bonds or an electrophilic substitution of arenes via Ir-nitrene intermediates. With the employment of a readily available iridium catalyst in dichloromethane or hexafluoro-2-propanol, a wide range of lactams were synthesized in good to excellent yields with high selectivity.
Revisiting Arene C(sp2)?H Amidation by Intramolecular Transfer of Iridium Nitrenoids: Evidence for a Spirocyclization Pathway
Hwang, Yeongyu,Park, Yoonsu,Kim, Yeong Bum,Kim, Dongwook,Chang, Sukbok
, p. 13565 - 13569 (2018/09/25)
Two mechanistic pathways, that is, electrocyclization and electrophilic aromatic substitution, are operative in most intramolecular C?H amination reactions proceeding by metal nitrenoid catalysis. Reported here is an alternative mechanistic scaffold leading to benzofused δ-lactams selectively. Integrated experimental and computational analysis revealed that the reaction proceeds by a key spirocyclization step followed by a skeletal rearrangement. Based on this mechanistic insight, a new synthetic route to spirolactams has been developed.
Introducing catalytic lossen rearrangements: Sustainable access to carbamates and amines
Kreye, Oliver,Wald, Sarah,Meier, Michael A. R.
supporting information, p. 81 - 86 (2013/03/13)
A new, highly efficient and environmentally benign catalytic variant of the Lossen rearrangement is described. Dimethyl carbonate (DMC) as green activation reagent of hydroxamic acids in presence of catalytic amounts of tertiary amine bases {1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 1,8-biazabicyclo 5.4.0 undec-7-ene (DBU), 1,4-diazabicyclo[2.2.2]octane (DABCO), and triethylamine} and small quantities of methanol initiate the rearrangement. Methyl carbamates were obtained in good to moderate yields when aliphatic hydroxamic acids were employed in this catalytic Lossen rearrangement; under the same conditions aromatic hydroxamic acids yielded anilines. Notably, the mixture of DMC/methanol was recycled several times without observing decreased yields, thus minimizing the produced waste. Moreover, several other organic carbonates were successfully employed in the introduced catalytic Lossen rearrangement procedure. Copyright