Welcome to LookChem.com Sign In|Join Free

CAS

  • or

15001-09-9

Post Buying Request

15001-09-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

15001-09-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 15001-09-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,5,0,0 and 1 respectively; the second part has 2 digits, 0 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 15001-09:
(7*1)+(6*5)+(5*0)+(4*0)+(3*1)+(2*0)+(1*9)=49
49 % 10 = 9
So 15001-09-9 is a valid CAS Registry Number.

15001-09-9Relevant articles and documents

Targeting Pim Kinases and DAPK3 to Control Hypertension

Carlson, David A.,Singer, Miriam R.,Sutherland, Cindy,Redondo, Clara,Alexander, Leila T.,Hughes, Philip F.,Knapp, Stefan,Gurley, Susan B.,Sparks, Matthew A.,MacDonald, Justin A.,Haystead, Timothy A.J.

, p. 1195 - 32,1207 (2018/07/06)

Sustained vascular smooth muscle hypercontractility promotes hypertension and cardiovascular disease. The etiology of hypercontractility is not completely understood. New therapeutic targets remain vitally important for drug discovery. Here we report that Pim kinases, in combination with DAPK3, regulate contractility and control hypertension. Using a co-crystal structure of lead molecule (HS38) in complex with DAPK3, a dual Pim/DAPK3 inhibitor (HS56) and selective DAPK3 inhibitors (HS94 and HS148) were developed to provide mechanistic insight into the polypharmacology of hypertension. In vitro and ex vivo studies indicated that Pim kinases directly phosphorylate smooth muscle targets and that Pim/DAPK3 inhibition, unlike selective DAPK3 inhibition, significantly reduces contractility. In vivo, HS56 decreased blood pressure in spontaneously hypertensive mice in a dose-dependent manner without affecting heart rate. These findings suggest including Pim kinase inhibition within a multi-target engagement strategy for hypertension management. HS56 represents a significant step in the development of molecularly targeted antihypertensive medications. Carlson et al. use crystal structure-guided medicinal chemistry techniques to develop a dual Pim/DAPK3 inhibitor (HS56) that reduces myosin phosphorylation and contractility in smooth muscle. Their findings reveal the contribution of Pim kinases to the pathology of hypertension, suggesting a novel multi-target engagement strategy for molecularly targeted antihypertensive medications.

Asymmetric synthesis of the four diastereoisomers of a novel non-steroidal farnesoid X receptor (FXR) agonist: Role of the chirality on the biological activity

Marinozzi, Maura,Carotti, Andrea,Sardella, Roccaldo,Buonerba, Federica,Ianni, Federica,Natalini, Benedetto,Passeri, Daniela,Rizzo, Giovanni,Pellicciari, Roberto

, p. 3780 - 3789 (2013/07/19)

An asymmetric synthetic strategy was designed for the preparation of the four possible diastereoisomers of 3,6-dimethyl-1-(2-methylphenyl)-4-(4- phenoxyphenyl)-4,8-dihydro-1H-pyrazolo[3,4-e][1,4]thiazepin-7-one, a non-steroidal FXR agonist, we recently discovered following a virtual screening approach. The results obtained from an AlphaScreen assay clearly demonstrated that only the isomer endowed with 4R,6S absolute configuration is responsible for the biological activity. A deep investigation of the different putative binding modes adopted by these enantiomerically pure ligands using computational modeling studies confirmed the enantioselectivity of FXR towards this class of molecules.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 15001-09-9