Welcome to LookChem.com Sign In|Join Free

CAS

  • or

152152-17-5

Post Buying Request

152152-17-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

152152-17-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 152152-17-5 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,5,2,1,5 and 2 respectively; the second part has 2 digits, 1 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 152152-17:
(8*1)+(7*5)+(6*2)+(5*1)+(4*5)+(3*2)+(2*1)+(1*7)=95
95 % 10 = 5
So 152152-17-5 is a valid CAS Registry Number.

152152-17-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-(3,4-difluorophenyl)prop-2-enoic acid

1.2 Other means of identification

Product number -
Other names 3-(3,4-difluoro-phenyl)-acrylic acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:152152-17-5 SDS

152152-17-5Relevant articles and documents

Dual Nickel/Ruthenium Strategy for Photoinduced Decarboxylative Cross-Coupling of α,β-Unsaturated Carboxylic Acids with Cycloketone Oxime Esters

Gao, Ang,Jiang, Run-Chuang,Liu, Chuang-Chuang,Liu, Qi-Le,Lu, Xiao-Yu,Xia, Ze-Jie

supporting information, p. 8829 - 8842 (2021/06/30)

Herein, a dual nickel/ruthenium strategy is developed for photoinduced decarboxylative cross-coupling between α,β-unsaturated carboxylic acids and cycloketone oxime esters. The reaction mechanism is distinct from previous photoinduced decarboxylation of α,β-unsaturated carboxylic acids. This reaction might proceed through a nickelacyclopropane intermediate. The C(sp2)-C(sp3) bond constructed by the aforementioned reaction provides an efficient approach to obtaining various cyanoalkyl alkenes, which are synthetically valuable organic skeletons in organic and medicinal chemistry, under mild reaction conditions. The protocol tolerates many critical functional groups and provides a route for the modification of complex organic molecules.

New coumarin/sulfocoumarin linked phenylacrylamides as selective transmembrane carbonic anhydrase inhibitors: Synthesis and in-vitro biological evaluation

Angeli, Andrea,Arifuddin, Mohammed,Singh, Priti,Supuran, Claudiu T.,Swain, Baijayantimala

, (2020/07/03)

Two novel series of phenylacrylamide linked coumarins and sulfocoumarins (6a-p, 8a-i, and 14a-g) were synthesized and evaluated against four physiologically relevant human carbonic anhydrases (hCAs, EC 4.2.1.1), isoforms hCA I, hCA II, hCA IX and hCA XII for their inhibitory action. All new compounds when screened for carbonic anhydrase inhibitory activity have shown selective inhibition towards the tumor associated isoforms hCA IX and XII over CA I and II, with inhibition constants in the submicromolar to low nanomolar range. Compound 6b and 14g exhibited significant inhibition with low nanomolar potency against hCA IX, whereas 6k was effective against hCA XII. Compounds 6b, 14g and 6k may be considered as lead molecules for future development of cancer therapeutics based on a novel mechanism of action.

Process for preparing cinnamic acids and alkyl esters thereof

-

Page/Page column 4, (2010/02/14)

A process for producing cinnamic acids and alkyl esters thereof, particularly, fluorinated cinnamic acids and alkyl esters thereof. The process comprises reacting the appropriate bromobenzene and acrylic acid ester in a palladium-catalyzed HECK reaction under JEFFREY conditions using a phase-transfer catalyst (PTC) and an organic base to produce the corresponding cinnamic acid ester, and then preferably hydrolyzing the resulting ester under appropriate basic conditions, e.g. in the presence of a hydroxide, and precipitating the corresponding cinnamic acid product.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 152152-17-5